| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0snor2el | Structured version Visualization version Unicode version | ||
| Description: A nonempty set is either a singleton or contains at least two different elements. (Contributed by AV, 20-Sep-2020.) |
| Ref | Expression |
|---|---|
| n0snor2el |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issn 4363 |
. . . 4
| |
| 2 | 1 | olcd 408 |
. . 3
|
| 3 | 2 | a1d 25 |
. 2
|
| 4 | df-ne 2795 |
. . . . . . 7
| |
| 5 | 4 | rexbii 3041 |
. . . . . 6
|
| 6 | rexnal 2995 |
. . . . . 6
| |
| 7 | 5, 6 | bitri 264 |
. . . . 5
|
| 8 | 7 | ralbii 2980 |
. . . 4
|
| 9 | ralnex 2992 |
. . . 4
| |
| 10 | 8, 9 | bitri 264 |
. . 3
|
| 11 | neeq1 2856 |
. . . . . . . 8
| |
| 12 | 11 | rexbidv 3052 |
. . . . . . 7
|
| 13 | 12 | rspccva 3308 |
. . . . . 6
|
| 14 | 13 | reximdva0 3933 |
. . . . 5
|
| 15 | 14 | orcd 407 |
. . . 4
|
| 16 | 15 | ex 450 |
. . 3
|
| 17 | 10, 16 | sylbir 225 |
. 2
|
| 18 | 3, 17 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 |
| This theorem is referenced by: iunopeqop 4981 |
| Copyright terms: Public domain | W3C validator |