| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jaob | Structured version Visualization version Unicode version | ||
| Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
| Ref | Expression |
|---|---|
| jaob |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.67-2 417 |
. . 3
| |
| 2 | olc 399 |
. . . 4
| |
| 3 | 2 | imim1i 63 |
. . 3
|
| 4 | 1, 3 | jca 554 |
. 2
|
| 5 | pm3.44 533 |
. 2
| |
| 6 | 4, 5 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
| This theorem is referenced by: pm4.77 828 pm5.53 837 pm4.83 970 axio 2592 unss 3787 ralunb 3794 intun 4509 intpr 4510 relop 5272 sqrt2irr 14979 algcvgblem 15290 efgred 18161 caucfil 23081 plydivex 24052 2sqlem6 25148 arg-ax 32415 tendoeq2 36062 ifpidg 37836 |
| Copyright terms: Public domain | W3C validator |