MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intpr Structured version   Visualization version   Unicode version

Theorem intpr 4510
Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.)
Hypotheses
Ref Expression
intpr.1  |-  A  e. 
_V
intpr.2  |-  B  e. 
_V
Assertion
Ref Expression
intpr  |-  |^| { A ,  B }  =  ( A  i^i  B )

Proof of Theorem intpr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1798 . . . 4  |-  ( A. y ( ( y  =  A  ->  x  e.  y )  /\  (
y  =  B  ->  x  e.  y )
)  <->  ( A. y
( y  =  A  ->  x  e.  y )  /\  A. y
( y  =  B  ->  x  e.  y ) ) )
2 vex 3203 . . . . . . . 8  |-  y  e. 
_V
32elpr 4198 . . . . . . 7  |-  ( y  e.  { A ,  B }  <->  ( y  =  A  \/  y  =  B ) )
43imbi1i 339 . . . . . 6  |-  ( ( y  e.  { A ,  B }  ->  x  e.  y )  <->  ( (
y  =  A  \/  y  =  B )  ->  x  e.  y ) )
5 jaob 822 . . . . . 6  |-  ( ( ( y  =  A  \/  y  =  B )  ->  x  e.  y )  <->  ( (
y  =  A  ->  x  e.  y )  /\  ( y  =  B  ->  x  e.  y ) ) )
64, 5bitri 264 . . . . 5  |-  ( ( y  e.  { A ,  B }  ->  x  e.  y )  <->  ( (
y  =  A  ->  x  e.  y )  /\  ( y  =  B  ->  x  e.  y ) ) )
76albii 1747 . . . 4  |-  ( A. y ( y  e. 
{ A ,  B }  ->  x  e.  y )  <->  A. y ( ( y  =  A  ->  x  e.  y )  /\  ( y  =  B  ->  x  e.  y ) ) )
8 intpr.1 . . . . . 6  |-  A  e. 
_V
98clel4 3342 . . . . 5  |-  ( x  e.  A  <->  A. y
( y  =  A  ->  x  e.  y ) )
10 intpr.2 . . . . . 6  |-  B  e. 
_V
1110clel4 3342 . . . . 5  |-  ( x  e.  B  <->  A. y
( y  =  B  ->  x  e.  y ) )
129, 11anbi12i 733 . . . 4  |-  ( ( x  e.  A  /\  x  e.  B )  <->  ( A. y ( y  =  A  ->  x  e.  y )  /\  A. y ( y  =  B  ->  x  e.  y ) ) )
131, 7, 123bitr4i 292 . . 3  |-  ( A. y ( y  e. 
{ A ,  B }  ->  x  e.  y )  <->  ( x  e.  A  /\  x  e.  B ) )
14 vex 3203 . . . 4  |-  x  e. 
_V
1514elint 4481 . . 3  |-  ( x  e.  |^| { A ,  B }  <->  A. y ( y  e.  { A ,  B }  ->  x  e.  y ) )
16 elin 3796 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
1713, 15, 163bitr4i 292 . 2  |-  ( x  e.  |^| { A ,  B }  <->  x  e.  ( A  i^i  B ) )
1817eqriv 2619 1  |-  |^| { A ,  B }  =  ( A  i^i  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   {cpr 4179   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-sn 4178  df-pr 4180  df-int 4476
This theorem is referenced by:  intprg  4511  uniintsn  4514  op1stb  4940  fiint  8237  shincli  28221  chincli  28319
  Copyright terms: Public domain W3C validator