| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intpr | Structured version Visualization version Unicode version | ||
| Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| intpr.1 |
|
| intpr.2 |
|
| Ref | Expression |
|---|---|
| intpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1798 |
. . . 4
| |
| 2 | vex 3203 |
. . . . . . . 8
| |
| 3 | 2 | elpr 4198 |
. . . . . . 7
|
| 4 | 3 | imbi1i 339 |
. . . . . 6
|
| 5 | jaob 822 |
. . . . . 6
| |
| 6 | 4, 5 | bitri 264 |
. . . . 5
|
| 7 | 6 | albii 1747 |
. . . 4
|
| 8 | intpr.1 |
. . . . . 6
| |
| 9 | 8 | clel4 3342 |
. . . . 5
|
| 10 | intpr.2 |
. . . . . 6
| |
| 11 | 10 | clel4 3342 |
. . . . 5
|
| 12 | 9, 11 | anbi12i 733 |
. . . 4
|
| 13 | 1, 7, 12 | 3bitr4i 292 |
. . 3
|
| 14 | vex 3203 |
. . . 4
| |
| 15 | 14 | elint 4481 |
. . 3
|
| 16 | elin 3796 |
. . 3
| |
| 17 | 13, 15, 16 | 3bitr4i 292 |
. 2
|
| 18 | 17 | eqriv 2619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-sn 4178 df-pr 4180 df-int 4476 |
| This theorem is referenced by: intprg 4511 uniintsn 4514 op1stb 4940 fiint 8237 shincli 28221 chincli 28319 |
| Copyright terms: Public domain | W3C validator |