Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoeq2 Structured version   Visualization version   Unicode version

Theorem tendoeq2 36062
Description: Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan 36112, we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendoeq2.b  |-  B  =  ( Base `  K
)
tendoeq2.h  |-  H  =  ( LHyp `  K
)
tendoeq2.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoeq2.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendoeq2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  A. f  e.  T  (
f  =/=  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) ) )  ->  U  =  V )
Distinct variable groups:    f, E    f, H    f, K    T, f    f, W    U, f    f, V
Allowed substitution hint:    B( f)

Proof of Theorem tendoeq2
StepHypRef Expression
1 tendoeq2.b . . . . . . . 8  |-  B  =  ( Base `  K
)
2 tendoeq2.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
3 tendoeq2.e . . . . . . . 8  |-  E  =  ( ( TEndo `  K
) `  W )
41, 2, 3tendoid 36061 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
54adantrr 753 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E ) )  -> 
( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
61, 2, 3tendoid 36061 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E
)  ->  ( V `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
76adantrl 752 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E ) )  -> 
( V `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
85, 7eqtr4d 2659 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E ) )  -> 
( U `  (  _I  |`  B ) )  =  ( V `  (  _I  |`  B ) ) )
9 fveq2 6191 . . . . . 6  |-  ( f  =  (  _I  |`  B )  ->  ( U `  f )  =  ( U `  (  _I  |`  B ) ) )
10 fveq2 6191 . . . . . 6  |-  ( f  =  (  _I  |`  B )  ->  ( V `  f )  =  ( V `  (  _I  |`  B ) ) )
119, 10eqeq12d 2637 . . . . 5  |-  ( f  =  (  _I  |`  B )  ->  ( ( U `
 f )  =  ( V `  f
)  <->  ( U `  (  _I  |`  B ) )  =  ( V `
 (  _I  |`  B ) ) ) )
128, 11syl5ibrcom 237 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E ) )  -> 
( f  =  (  _I  |`  B )  ->  ( U `  f
)  =  ( V `
 f ) ) )
1312ralrimivw 2967 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E ) )  ->  A. f  e.  T  ( f  =  (  _I  |`  B )  ->  ( U `  f
)  =  ( V `
 f ) ) )
14 r19.26 3064 . . . . 5  |-  ( A. f  e.  T  (
( f  =  (  _I  |`  B )  ->  ( U `  f
)  =  ( V `
 f ) )  /\  ( f  =/=  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) ) )  <->  ( A. f  e.  T  (
f  =  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) )  /\  A. f  e.  T  ( f  =/=  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) ) ) )
15 jaob 822 . . . . . . 7  |-  ( ( ( f  =  (  _I  |`  B )  \/  f  =/=  (  _I  |`  B ) )  ->  ( U `  f )  =  ( V `  f ) )  <->  ( ( f  =  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) )  /\  ( f  =/=  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) ) ) )
16 exmidne 2804 . . . . . . . 8  |-  ( f  =  (  _I  |`  B )  \/  f  =/=  (  _I  |`  B ) )
17 pm5.5 351 . . . . . . . 8  |-  ( ( f  =  (  _I  |`  B )  \/  f  =/=  (  _I  |`  B ) )  ->  ( (
( f  =  (  _I  |`  B )  \/  f  =/=  (  _I  |`  B ) )  ->  ( U `  f )  =  ( V `  f ) )  <->  ( U `  f )  =  ( V `  f ) ) )
1816, 17ax-mp 5 . . . . . . 7  |-  ( ( ( f  =  (  _I  |`  B )  \/  f  =/=  (  _I  |`  B ) )  ->  ( U `  f )  =  ( V `  f ) )  <->  ( U `  f )  =  ( V `  f ) )
1915, 18bitr3i 266 . . . . . 6  |-  ( ( ( f  =  (  _I  |`  B )  ->  ( U `  f
)  =  ( V `
 f ) )  /\  ( f  =/=  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) ) )  <->  ( U `  f )  =  ( V `  f ) )
2019ralbii 2980 . . . . 5  |-  ( A. f  e.  T  (
( f  =  (  _I  |`  B )  ->  ( U `  f
)  =  ( V `
 f ) )  /\  ( f  =/=  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) ) )  <->  A. f  e.  T  ( U `  f )  =  ( V `  f ) )
2114, 20bitr3i 266 . . . 4  |-  ( ( A. f  e.  T  ( f  =  (  _I  |`  B )  ->  ( U `  f
)  =  ( V `
 f ) )  /\  A. f  e.  T  ( f  =/=  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) ) )  <->  A. f  e.  T  ( U `  f )  =  ( V `  f ) )
22 tendoeq2.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
232, 22, 3tendoeq1 36052 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  A. f  e.  T  ( U `  f )  =  ( V `  f ) )  ->  U  =  V )
24233expia 1267 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E ) )  -> 
( A. f  e.  T  ( U `  f )  =  ( V `  f )  ->  U  =  V ) )
2521, 24syl5bi 232 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E ) )  -> 
( ( A. f  e.  T  ( f  =  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) )  /\  A. f  e.  T  ( f  =/=  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) ) )  ->  U  =  V ) )
2613, 25mpand 711 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E ) )  -> 
( A. f  e.  T  ( f  =/=  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) )  ->  U  =  V ) )
27263impia 1261 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  A. f  e.  T  (
f  =/=  (  _I  |`  B )  ->  ( U `  f )  =  ( V `  f ) ) )  ->  U  =  V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    _I cid 5023    |` cres 5116   ` cfv 5888   Basecbs 15857   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043
This theorem is referenced by:  tendocan  36112
  Copyright terms: Public domain W3C validator