MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem6 Structured version   Visualization version   Unicode version

Theorem 2sqlem6 25148
Description: Lemma for 2sq 25155. If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem6.1  |-  ( ph  ->  A  e.  NN )
2sqlem6.2  |-  ( ph  ->  B  e.  NN )
2sqlem6.3  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  B  ->  p  e.  S )
)
2sqlem6.4  |-  ( ph  ->  ( A  x.  B
)  e.  S )
Assertion
Ref Expression
2sqlem6  |-  ( ph  ->  A  e.  S )
Distinct variable groups:    w, p    ph, p    B, p    S, p
Allowed substitution hints:    ph( w)    A( w, p)    B( w)    S( w)

Proof of Theorem 2sqlem6
Dummy variables  n  x  y  z  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem6.1 . 2  |-  ( ph  ->  A  e.  NN )
2 2sqlem6.2 . . 3  |-  ( ph  ->  B  e.  NN )
3 2sqlem6.3 . . 3  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  B  ->  p  e.  S )
)
4 breq2 4657 . . . . . . 7  |-  ( x  =  1  ->  (
p  ||  x  <->  p  ||  1
) )
54imbi1d 331 . . . . . 6  |-  ( x  =  1  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  1  ->  p  e.  S ) ) )
65ralbidv 2986 . . . . 5  |-  ( x  =  1  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  1  ->  p  e.  S ) ) )
7 oveq2 6658 . . . . . . . 8  |-  ( x  =  1  ->  (
m  x.  x )  =  ( m  x.  1 ) )
87eleq1d 2686 . . . . . . 7  |-  ( x  =  1  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  1 )  e.  S
) )
98imbi1d 331 . . . . . 6  |-  ( x  =  1  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  1 )  e.  S  ->  m  e.  S ) ) )
109ralbidv 2986 . . . . 5  |-  ( x  =  1  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S ) ) )
116, 10imbi12d 334 . . . 4  |-  ( x  =  1  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  1  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S ) ) ) )
12 breq2 4657 . . . . . . 7  |-  ( x  =  y  ->  (
p  ||  x  <->  p  ||  y
) )
1312imbi1d 331 . . . . . 6  |-  ( x  =  y  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  y  ->  p  e.  S ) ) )
1413ralbidv 2986 . . . . 5  |-  ( x  =  y  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  y  ->  p  e.  S ) ) )
15 oveq2 6658 . . . . . . . 8  |-  ( x  =  y  ->  (
m  x.  x )  =  ( m  x.  y ) )
1615eleq1d 2686 . . . . . . 7  |-  ( x  =  y  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  y )  e.  S
) )
1716imbi1d 331 . . . . . 6  |-  ( x  =  y  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  y )  e.  S  ->  m  e.  S ) ) )
1817ralbidv 2986 . . . . 5  |-  ( x  =  y  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) ) )
1914, 18imbi12d 334 . . . 4  |-  ( x  =  y  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  y  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) ) ) )
20 breq2 4657 . . . . . . 7  |-  ( x  =  z  ->  (
p  ||  x  <->  p  ||  z
) )
2120imbi1d 331 . . . . . 6  |-  ( x  =  z  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  z  ->  p  e.  S ) ) )
2221ralbidv 2986 . . . . 5  |-  ( x  =  z  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  z  ->  p  e.  S ) ) )
23 oveq2 6658 . . . . . . . 8  |-  ( x  =  z  ->  (
m  x.  x )  =  ( m  x.  z ) )
2423eleq1d 2686 . . . . . . 7  |-  ( x  =  z  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  z )  e.  S
) )
2524imbi1d 331 . . . . . 6  |-  ( x  =  z  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )
2625ralbidv 2986 . . . . 5  |-  ( x  =  z  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )
2722, 26imbi12d 334 . . . 4  |-  ( x  =  z  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  z  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) ) )
28 breq2 4657 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  (
p  ||  x  <->  p  ||  (
y  x.  z ) ) )
2928imbi1d 331 . . . . . 6  |-  ( x  =  ( y  x.  z )  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  (
y  x.  z )  ->  p  e.  S
) ) )
3029ralbidv 2986 . . . . 5  |-  ( x  =  ( y  x.  z )  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) ) )
31 oveq2 6658 . . . . . . . 8  |-  ( x  =  ( y  x.  z )  ->  (
m  x.  x )  =  ( m  x.  ( y  x.  z
) ) )
3231eleq1d 2686 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  ( y  x.  z
) )  e.  S
) )
3332imbi1d 331 . . . . . 6  |-  ( x  =  ( y  x.  z )  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
3433ralbidv 2986 . . . . 5  |-  ( x  =  ( y  x.  z )  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
3530, 34imbi12d 334 . . . 4  |-  ( x  =  ( y  x.  z )  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) ) )
36 breq2 4657 . . . . . . 7  |-  ( x  =  B  ->  (
p  ||  x  <->  p  ||  B
) )
3736imbi1d 331 . . . . . 6  |-  ( x  =  B  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  B  ->  p  e.  S ) ) )
3837ralbidv 2986 . . . . 5  |-  ( x  =  B  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  B  ->  p  e.  S ) ) )
39 oveq2 6658 . . . . . . . 8  |-  ( x  =  B  ->  (
m  x.  x )  =  ( m  x.  B ) )
4039eleq1d 2686 . . . . . . 7  |-  ( x  =  B  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  B )  e.  S
) )
4140imbi1d 331 . . . . . 6  |-  ( x  =  B  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  B )  e.  S  ->  m  e.  S ) ) )
4241ralbidv 2986 . . . . 5  |-  ( x  =  B  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) ) )
4338, 42imbi12d 334 . . . 4  |-  ( x  =  B  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  B  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) ) ) )
44 nncn 11028 . . . . . . . . 9  |-  ( m  e.  NN  ->  m  e.  CC )
4544mulid1d 10057 . . . . . . . 8  |-  ( m  e.  NN  ->  (
m  x.  1 )  =  m )
4645eleq1d 2686 . . . . . . 7  |-  ( m  e.  NN  ->  (
( m  x.  1 )  e.  S  <->  m  e.  S ) )
4746biimpd 219 . . . . . 6  |-  ( m  e.  NN  ->  (
( m  x.  1 )  e.  S  ->  m  e.  S )
)
4847rgen 2922 . . . . 5  |-  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S )
4948a1i 11 . . . 4  |-  ( A. p  e.  Prime  ( p 
||  1  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S ) )
50 breq1 4656 . . . . . . 7  |-  ( p  =  x  ->  (
p  ||  x  <->  x  ||  x
) )
51 eleq1 2689 . . . . . . 7  |-  ( p  =  x  ->  (
p  e.  S  <->  x  e.  S ) )
5250, 51imbi12d 334 . . . . . 6  |-  ( p  =  x  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( x  ||  x  ->  x  e.  S ) ) )
5352rspcv 3305 . . . . 5  |-  ( x  e.  Prime  ->  ( A. p  e.  Prime  ( p 
||  x  ->  p  e.  S )  ->  (
x  ||  x  ->  x  e.  S ) ) )
54 prmz 15389 . . . . . . 7  |-  ( x  e.  Prime  ->  x  e.  ZZ )
55 iddvds 14995 . . . . . . 7  |-  ( x  e.  ZZ  ->  x  ||  x )
5654, 55syl 17 . . . . . 6  |-  ( x  e.  Prime  ->  x  ||  x )
57 2sq.1 . . . . . . . . . 10  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
58 simprl 794 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  m  e.  NN )
59 simpll 790 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  x  e.  Prime )
60 simprr 796 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  -> 
( m  x.  x
)  e.  S )
61 simplr 792 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  x  e.  S )
6257, 58, 59, 60, 612sqlem5 25147 . . . . . . . . 9  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  m  e.  S )
6362expr 643 . . . . . . . 8  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  m  e.  NN )  ->  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )
6463ralrimiva 2966 . . . . . . 7  |-  ( ( x  e.  Prime  /\  x  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )
6564ex 450 . . . . . 6  |-  ( x  e.  Prime  ->  ( x  e.  S  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) ) )
6656, 65embantd 59 . . . . 5  |-  ( x  e.  Prime  ->  ( ( x  ||  x  ->  x  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) ) )
6753, 66syld 47 . . . 4  |-  ( x  e.  Prime  ->  ( A. p  e.  Prime  ( p 
||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) ) )
68 prth 595 . . . . 5  |-  ( ( ( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) )  /\  ( A. p  e.  Prime  ( p 
||  z  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  ( ( A. p  e.  Prime  ( p 
||  y  ->  p  e.  S )  /\  A. p  e.  Prime  ( p 
||  z  ->  p  e.  S ) )  -> 
( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )
) ) )
69 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  ->  p  e.  Prime )
70 eluzelz 11697 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
7170ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
y  e.  ZZ )
72 eluzelz 11697 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
7372ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
z  e.  ZZ )
74 euclemma 15425 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
p  ||  ( y  x.  z )  <->  ( p  ||  y  \/  p  ||  z ) ) )
7569, 71, 73, 74syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( p  ||  (
y  x.  z )  <-> 
( p  ||  y  \/  p  ||  z ) ) )
7675imbi1d 331 . . . . . . . . . . . 12  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( ( p  ||  ( y  x.  z
)  ->  p  e.  S )  <->  ( (
p  ||  y  \/  p  ||  z )  ->  p  e.  S )
) )
77 jaob 822 . . . . . . . . . . . 12  |-  ( ( ( p  ||  y  \/  p  ||  z )  ->  p  e.  S
)  <->  ( ( p 
||  y  ->  p  e.  S )  /\  (
p  ||  z  ->  p  e.  S ) ) )
7876, 77syl6bb 276 . . . . . . . . . . 11  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( ( p  ||  ( y  x.  z
)  ->  p  e.  S )  <->  ( (
p  ||  y  ->  p  e.  S )  /\  ( p  ||  z  ->  p  e.  S )
) ) )
7978ralbidva 2985 . . . . . . . . . 10  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( A. p  e.  Prime  ( p 
||  ( y  x.  z )  ->  p  e.  S )  <->  A. p  e.  Prime  ( ( p 
||  y  ->  p  e.  S )  /\  (
p  ||  z  ->  p  e.  S ) ) ) )
80 r19.26 3064 . . . . . . . . . 10  |-  ( A. p  e.  Prime  ( ( p  ||  y  ->  p  e.  S )  /\  ( p  ||  z  ->  p  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  y  ->  p  e.  S
)  /\  A. p  e.  Prime  ( p  ||  z  ->  p  e.  S
) ) )
8179, 80syl6bb 276 . . . . . . . . 9  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( A. p  e.  Prime  ( p 
||  ( y  x.  z )  ->  p  e.  S )  <->  ( A. p  e.  Prime  ( p 
||  y  ->  p  e.  S )  /\  A. p  e.  Prime  ( p 
||  z  ->  p  e.  S ) ) ) )
8281biimpa 501 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  /\  A. p  e. 
Prime  ( p  ||  z  ->  p  e.  S ) ) )
83 oveq1 6657 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
m  x.  y )  =  ( n  x.  y ) )
8483eleq1d 2686 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
( m  x.  y
)  e.  S  <->  ( n  x.  y )  e.  S
) )
85 eleq1 2689 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
m  e.  S  <->  n  e.  S ) )
8684, 85imbi12d 334 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
( ( m  x.  y )  e.  S  ->  m  e.  S )  <-> 
( ( n  x.  y )  e.  S  ->  n  e.  S ) ) )
8786cbvralv 3171 . . . . . . . . . 10  |-  ( A. m  e.  NN  (
( m  x.  y
)  e.  S  ->  m  e.  S )  <->  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)
8844adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  m  e.  CC )
89 uzssz 11707 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= ` 
2 )  C_  ZZ
90 zsscn 11385 . . . . . . . . . . . . . . . . 17  |-  ZZ  C_  CC
9189, 90sstri 3612 . . . . . . . . . . . . . . . 16  |-  ( ZZ>= ` 
2 )  C_  CC
92 simpll 790 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
y  e.  ( ZZ>= ` 
2 ) )
9392ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  y  e.  ( ZZ>= `  2 )
)
9491, 93sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  y  e.  CC )
95 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
z  e.  ( ZZ>= ` 
2 ) )
9695ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  z  e.  ( ZZ>= `  2 )
)
9791, 96sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  z  e.  CC )
98 mul32 10203 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( m  x.  y
)  x.  z )  =  ( ( m  x.  z )  x.  y ) )
99 mulass 10024 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( m  x.  y
)  x.  z )  =  ( m  x.  ( y  x.  z
) ) )
10098, 99eqtr3d 2658 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( m  x.  z
)  x.  y )  =  ( m  x.  ( y  x.  z
) ) )
10188, 94, 97, 100syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( m  x.  z )  x.  y )  =  ( m  x.  (
y  x.  z ) ) )
102101eleq1d 2686 . . . . . . . . . . . . 13  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( ( m  x.  z
)  x.  y )  e.  S  <->  ( m  x.  ( y  x.  z
) )  e.  S
) )
103 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  m  e.  NN )
104 eluz2nn 11726 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  NN )
10596, 104syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  z  e.  NN )
106103, 105nnmulcld 11068 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( m  x.  z )  e.  NN )
107 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  A. n  e.  NN  ( ( n  x.  y )  e.  S  ->  n  e.  S ) )
108 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( m  x.  z )  ->  (
n  x.  y )  =  ( ( m  x.  z )  x.  y ) )
109108eleq1d 2686 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( m  x.  z )  ->  (
( n  x.  y
)  e.  S  <->  ( (
m  x.  z )  x.  y )  e.  S ) )
110 eleq1 2689 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( m  x.  z )  ->  (
n  e.  S  <->  ( m  x.  z )  e.  S
) )
111109, 110imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( n  =  ( m  x.  z )  ->  (
( ( n  x.  y )  e.  S  ->  n  e.  S )  <-> 
( ( ( m  x.  z )  x.  y )  e.  S  ->  ( m  x.  z
)  e.  S ) ) )
112111rspcv 3305 . . . . . . . . . . . . . 14  |-  ( ( m  x.  z )  e.  NN  ->  ( A. n  e.  NN  ( ( n  x.  y )  e.  S  ->  n  e.  S )  ->  ( ( ( m  x.  z )  x.  y )  e.  S  ->  ( m  x.  z )  e.  S
) ) )
113106, 107, 112sylc 65 . . . . . . . . . . . . 13  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( ( m  x.  z
)  x.  y )  e.  S  ->  (
m  x.  z )  e.  S ) )
114102, 113sylbird 250 . . . . . . . . . . . 12  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  (
m  x.  z )  e.  S ) )
115114imim1d 82 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( ( m  x.  z
)  e.  S  ->  m  e.  S )  ->  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
116115ralimdva 2962 . . . . . . . . . 10  |-  ( ( ( ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) )  /\  A. p  e. 
Prime  ( p  ||  (
y  x.  z )  ->  p  e.  S
) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  ->  ( A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
11787, 116sylan2b 492 . . . . . . . . 9  |-  ( ( ( ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) )  /\  A. p  e. 
Prime  ( p  ||  (
y  x.  z )  ->  p  e.  S
) )  /\  A. m  e.  NN  (
( m  x.  y
)  e.  S  ->  m  e.  S )
)  ->  ( A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
118117expimpd 629 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
( ( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )
)  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) )
11982, 118embantd 59 . . . . . . 7  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
( ( ( A. p  e.  Prime  ( p 
||  y  ->  p  e.  S )  /\  A. p  e.  Prime  ( p 
||  z  ->  p  e.  S ) )  -> 
( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )
) )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) )
120119ex 450 . . . . . 6  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( A. p  e.  Prime  ( p 
||  ( y  x.  z )  ->  p  e.  S )  ->  (
( ( A. p  e.  Prime  ( p  ||  y  ->  p  e.  S
)  /\  A. p  e.  Prime  ( p  ||  z  ->  p  e.  S
) )  ->  ( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) ) )
121120com23 86 . . . . 5  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  /\  A. p  e. 
Prime  ( p  ||  z  ->  p  e.  S ) )  ->  ( A. m  e.  NN  (
( m  x.  y
)  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  ( A. p  e.  Prime  ( p  ||  ( y  x.  z )  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) ) )
12268, 121syl5 34 . . . 4  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) )  /\  ( A. p  e.  Prime  ( p 
||  z  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  ( A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) ) )
12311, 19, 27, 35, 43, 49, 67, 122prmind 15399 . . 3  |-  ( B  e.  NN  ->  ( A. p  e.  Prime  ( p  ||  B  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) ) )
1242, 3, 123sylc 65 . 2  |-  ( ph  ->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) )
125 2sqlem6.4 . 2  |-  ( ph  ->  ( A  x.  B
)  e.  S )
126 oveq1 6657 . . . . 5  |-  ( m  =  A  ->  (
m  x.  B )  =  ( A  x.  B ) )
127126eleq1d 2686 . . . 4  |-  ( m  =  A  ->  (
( m  x.  B
)  e.  S  <->  ( A  x.  B )  e.  S
) )
128 eleq1 2689 . . . 4  |-  ( m  =  A  ->  (
m  e.  S  <->  A  e.  S ) )
129127, 128imbi12d 334 . . 3  |-  ( m  =  A  ->  (
( ( m  x.  B )  e.  S  ->  m  e.  S )  <-> 
( ( A  x.  B )  e.  S  ->  A  e.  S ) ) )
130129rspcv 3305 . 2  |-  ( A  e.  NN  ->  ( A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S )  ->  ( ( A  x.  B )  e.  S  ->  A  e.  S ) ) )
1311, 124, 125, 130syl3c 66 1  |-  ( ph  ->  A  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    x. cmul 9941   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   ^cexp 12860   abscabs 13974    || cdvds 14983   Primecprime 15385   ZZ[_i]cgz 15633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-gz 15634
This theorem is referenced by:  2sqlem8  25151
  Copyright terms: Public domain W3C validator