MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivex Structured version   Visualization version   Unicode version

Theorem plydivex 24052
Description: Lemma for plydivalg 24054. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
plydiv.tm  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
plydiv.rc  |-  ( (
ph  /\  ( x  e.  S  /\  x  =/=  0 ) )  -> 
( 1  /  x
)  e.  S )
plydiv.m1  |-  ( ph  -> 
-u 1  e.  S
)
plydiv.f  |-  ( ph  ->  F  e.  (Poly `  S ) )
plydiv.g  |-  ( ph  ->  G  e.  (Poly `  S ) )
plydiv.z  |-  ( ph  ->  G  =/=  0p )
plydiv.r  |-  R  =  ( F  oF  -  ( G  oF  x.  q )
)
Assertion
Ref Expression
plydivex  |-  ( ph  ->  E. q  e.  (Poly `  S ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )
Distinct variable groups:    x, y,
q, F    ph, x, y    G, q, x, y    x, R, y    S, q, x, y
Allowed substitution hints:    ph( q)    R( q)

Proof of Theorem plydivex
Dummy variables  z 
f  d  p  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . . . . 6  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 dgrcl 23989 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
31, 2syl 17 . . . . 5  |-  ( ph  ->  (deg `  F )  e.  NN0 )
43nn0red 11352 . . . 4  |-  ( ph  ->  (deg `  F )  e.  RR )
5 plydiv.g . . . . . 6  |-  ( ph  ->  G  e.  (Poly `  S ) )
6 dgrcl 23989 . . . . . 6  |-  ( G  e.  (Poly `  S
)  ->  (deg `  G
)  e.  NN0 )
75, 6syl 17 . . . . 5  |-  ( ph  ->  (deg `  G )  e.  NN0 )
87nn0red 11352 . . . 4  |-  ( ph  ->  (deg `  G )  e.  RR )
94, 8resubcld 10458 . . 3  |-  ( ph  ->  ( (deg `  F
)  -  (deg `  G ) )  e.  RR )
10 arch 11289 . . 3  |-  ( ( (deg `  F )  -  (deg `  G )
)  e.  RR  ->  E. d  e.  NN  (
(deg `  F )  -  (deg `  G )
)  <  d )
119, 10syl 17 . 2  |-  ( ph  ->  E. d  e.  NN  ( (deg `  F )  -  (deg `  G )
)  <  d )
12 olc 399 . . . 4  |-  ( ( (deg `  F )  -  (deg `  G )
)  <  d  ->  ( F  =  0p  \/  ( (deg `  F )  -  (deg `  G ) )  < 
d ) )
131adantr 481 . . . . 5  |-  ( (
ph  /\  d  e.  NN )  ->  F  e.  (Poly `  S )
)
14 nnnn0 11299 . . . . . . 7  |-  ( d  e.  NN  ->  d  e.  NN0 )
15 breq2 4657 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
( (deg `  f
)  -  (deg `  G ) )  < 
x  <->  ( (deg `  f )  -  (deg `  G ) )  <  0 ) )
1615orbi2d 738 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  x )  <->  ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  <  0 ) ) )
1716imbi1d 331 . . . . . . . . . 10  |-  ( x  =  0  ->  (
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  x )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <-> 
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  0 )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
1817ralbidv 2986 . . . . . . . . 9  |-  ( x  =  0  ->  ( A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
x )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  <  0 )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
1918imbi2d 330 . . . . . . . 8  |-  ( x  =  0  ->  (
( ph  ->  A. f  e.  (Poly `  S )
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  x )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  <  0 )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) ) )
20 breq2 4657 . . . . . . . . . . . 12  |-  ( x  =  d  ->  (
( (deg `  f
)  -  (deg `  G ) )  < 
x  <->  ( (deg `  f )  -  (deg `  G ) )  < 
d ) )
2120orbi2d 738 . . . . . . . . . . 11  |-  ( x  =  d  ->  (
( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  x )  <->  ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
d ) ) )
2221imbi1d 331 . . . . . . . . . 10  |-  ( x  =  d  ->  (
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  x )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <-> 
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
2322ralbidv 2986 . . . . . . . . 9  |-  ( x  =  d  ->  ( A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
x )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
2423imbi2d 330 . . . . . . . 8  |-  ( x  =  d  ->  (
( ph  ->  A. f  e.  (Poly `  S )
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  x )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) ) )
25 breq2 4657 . . . . . . . . . . . 12  |-  ( x  =  ( d  +  1 )  ->  (
( (deg `  f
)  -  (deg `  G ) )  < 
x  <->  ( (deg `  f )  -  (deg `  G ) )  < 
( d  +  1 ) ) )
2625orbi2d 738 . . . . . . . . . . 11  |-  ( x  =  ( d  +  1 )  ->  (
( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  x )  <->  ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
( d  +  1 ) ) ) )
2726imbi1d 331 . . . . . . . . . 10  |-  ( x  =  ( d  +  1 )  ->  (
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  x )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <-> 
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  ( d  +  1 ) )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
2827ralbidv 2986 . . . . . . . . 9  |-  ( x  =  ( d  +  1 )  ->  ( A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
x )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
( d  +  1 ) )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
2928imbi2d 330 . . . . . . . 8  |-  ( x  =  ( d  +  1 )  ->  (
( ph  ->  A. f  e.  (Poly `  S )
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  x )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
( d  +  1 ) )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) ) )
30 plydiv.pl . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
3130adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  (Poly `  S )  /\  (
f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  <  0 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
32 plydiv.tm . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
3332adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  (Poly `  S )  /\  (
f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  <  0 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
34 plydiv.rc . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  S  /\  x  =/=  0 ) )  -> 
( 1  /  x
)  e.  S )
3534adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  (Poly `  S )  /\  (
f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  <  0 ) ) )  /\  ( x  e.  S  /\  x  =/=  0 ) )  -> 
( 1  /  x
)  e.  S )
36 plydiv.m1 . . . . . . . . . . . 12  |-  ( ph  -> 
-u 1  e.  S
)
3736adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  S )  /\  ( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  0 ) ) )  ->  -u 1  e.  S )
38 simprl 794 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  S )  /\  ( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  0 ) ) )  ->  f  e.  (Poly `  S ) )
395adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  S )  /\  ( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  0 ) ) )  ->  G  e.  (Poly `  S ) )
40 plydiv.z . . . . . . . . . . . 12  |-  ( ph  ->  G  =/=  0p )
4140adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  S )  /\  ( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  0 ) ) )  ->  G  =/=  0p )
42 eqid 2622 . . . . . . . . . . 11  |-  ( f  oF  -  ( G  oF  x.  q
) )  =  ( f  oF  -  ( G  oF  x.  q ) )
43 simprr 796 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  S )  /\  ( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  0 ) ) )  ->  ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  <  0 ) )
4431, 33, 35, 37, 38, 39, 41, 42, 43plydivlem3 24050 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  S )  /\  ( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  0 ) ) )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )
4544expr 643 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  (Poly `  S ) )  ->  ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  <  0 )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )
4645ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  <  0 )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )
47 eqeq1 2626 . . . . . . . . . . . . . . . 16  |-  ( f  =  g  ->  (
f  =  0p  <-> 
g  =  0p ) )
48 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  g  ->  (deg `  f )  =  (deg
`  g ) )
4948oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( f  =  g  ->  (
(deg `  f )  -  (deg `  G )
)  =  ( (deg
`  g )  -  (deg `  G ) ) )
5049breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( f  =  g  ->  (
( (deg `  f
)  -  (deg `  G ) )  < 
d  <->  ( (deg `  g )  -  (deg `  G ) )  < 
d ) )
5147, 50orbi12d 746 . . . . . . . . . . . . . . 15  |-  ( f  =  g  ->  (
( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  d )  <->  ( g  =  0p  \/  ( (deg `  g
)  -  (deg `  G ) )  < 
d ) ) )
52 oveq1 6657 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  g  ->  (
f  oF  -  ( G  oF  x.  q ) )  =  ( g  oF  -  ( G  oF  x.  q )
) )
5352eqeq1d 2624 . . . . . . . . . . . . . . . . 17  |-  ( f  =  g  ->  (
( f  oF  -  ( G  oF  x.  q )
)  =  0p  <-> 
( g  oF  -  ( G  oF  x.  q )
)  =  0p ) )
5452fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  g  ->  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  =  (deg
`  ( g  oF  -  ( G  oF  x.  q
) ) ) )
5554breq1d 4663 . . . . . . . . . . . . . . . . 17  |-  ( f  =  g  ->  (
(deg `  ( f  oF  -  ( G  oF  x.  q
) ) )  < 
(deg `  G )  <->  (deg
`  ( g  oF  -  ( G  oF  x.  q
) ) )  < 
(deg `  G )
) )
5653, 55orbi12d 746 . . . . . . . . . . . . . . . 16  |-  ( f  =  g  ->  (
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) )  <->  ( (
g  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )
5756rexbidv 3052 . . . . . . . . . . . . . . 15  |-  ( f  =  g  ->  ( E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) )  <->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )
5851, 57imbi12d 334 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  (
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <-> 
( ( g  =  0p  \/  (
(deg `  g )  -  (deg `  G )
)  <  d )  ->  E. q  e.  (Poly `  S ) ( ( g  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
5958cbvralv 3171 . . . . . . . . . . . . 13  |-  ( A. f  e.  (Poly `  S
) ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <->  A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )
60 simplll 798 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S
) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  ->  ph )
6160, 30sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S ) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  +  y )  e.  S )
6260, 32sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S ) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  x.  y )  e.  S
)
6360, 34sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S ) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  /\  (
x  e.  S  /\  x  =/=  0 ) )  ->  ( 1  /  x )  e.  S
)
6460, 36syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S
) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  ->  -u 1  e.  S )
65 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S
) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  ->  f  e.  (Poly `  S )
)
6660, 5syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S
) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  ->  G  e.  (Poly `  S )
)
6760, 40syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S
) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  ->  G  =/=  0p )
68 simpllr 799 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S
) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  ->  d  e.  NN0 )
69 simprrr 805 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S
) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  ->  (
(deg `  f )  -  (deg `  G )
)  =  d )
70 simprrl 804 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S
) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  ->  f  =/=  0p )
71 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( g  oF  -  ( G  oF  x.  p
) )  =  ( g  oF  -  ( G  oF  x.  p ) )
72 oveq1 6657 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  z  ->  (
w ^ d )  =  ( z ^
d ) )
7372oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( w  =  z  ->  (
( ( (coeff `  f ) `  (deg `  f ) )  / 
( (coeff `  G
) `  (deg `  G
) ) )  x.  ( w ^ d
) )  =  ( ( ( (coeff `  f ) `  (deg `  f ) )  / 
( (coeff `  G
) `  (deg `  G
) ) )  x.  ( z ^ d
) ) )
7473cbvmptv 4750 . . . . . . . . . . . . . . . 16  |-  ( w  e.  CC  |->  ( ( ( (coeff `  f
) `  (deg `  f
) )  /  (
(coeff `  G ) `  (deg `  G )
) )  x.  (
w ^ d ) ) )  =  ( z  e.  CC  |->  ( ( ( (coeff `  f ) `  (deg `  f ) )  / 
( (coeff `  G
) `  (deg `  G
) ) )  x.  ( z ^ d
) ) )
75 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S
) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  ->  A. g  e.  (Poly `  S )
( ( g  =  0p  \/  (
(deg `  g )  -  (deg `  G )
)  <  d )  ->  E. q  e.  (Poly `  S ) ( ( g  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )
76 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( q  =  p  ->  ( G  oF  x.  q
)  =  ( G  oF  x.  p
) )
7776oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( q  =  p  ->  (
g  oF  -  ( G  oF  x.  q ) )  =  ( g  oF  -  ( G  oF  x.  p )
) )
7877eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . 21  |-  ( q  =  p  ->  (
( g  oF  -  ( G  oF  x.  q )
)  =  0p  <-> 
( g  oF  -  ( G  oF  x.  p )
)  =  0p ) )
7977fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( q  =  p  ->  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  =  (deg
`  ( g  oF  -  ( G  oF  x.  p
) ) ) )
8079breq1d 4663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( q  =  p  ->  (
(deg `  ( g  oF  -  ( G  oF  x.  q
) ) )  < 
(deg `  G )  <->  (deg
`  ( g  oF  -  ( G  oF  x.  p
) ) )  < 
(deg `  G )
) )
8178, 80orbi12d 746 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  =  p  ->  (
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) )  <->  ( (
g  oF  -  ( G  oF  x.  p ) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )
8281cbvrexv 3172 . . . . . . . . . . . . . . . . . . 19  |-  ( E. q  e.  (Poly `  S ) ( ( g  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) )  <->  E. p  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) )
8382imbi2i 326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g  =  0p  \/  ( (deg
`  g )  -  (deg `  G ) )  <  d )  ->  E. q  e.  (Poly `  S ) ( ( g  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <-> 
( ( g  =  0p  \/  (
(deg `  g )  -  (deg `  G )
)  <  d )  ->  E. p  e.  (Poly `  S ) ( ( g  oF  -  ( G  oF  x.  p ) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )
8483ralbii 2980 . . . . . . . . . . . . . . . . 17  |-  ( A. g  e.  (Poly `  S
) ( ( g  =  0p  \/  ( (deg `  g
)  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <->  A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. p  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )
8575, 84sylib 208 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S
) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  ->  A. g  e.  (Poly `  S )
( ( g  =  0p  \/  (
(deg `  g )  -  (deg `  G )
)  <  d )  ->  E. p  e.  (Poly `  S ) ( ( g  oF  -  ( G  oF  x.  p ) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )
86 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (coeff `  f )  =  (coeff `  f )
87 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (coeff `  G )  =  (coeff `  G )
88 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (deg `  f )  =  (deg
`  f )
89 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (deg `  G )  =  (deg
`  G )
9061, 62, 63, 64, 65, 66, 67, 42, 68, 69, 70, 71, 74, 85, 86, 87, 88, 89plydivlem4 24051 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S
) )  /\  ( A. g  e.  (Poly `  S ) ( ( g  =  0p  \/  ( (deg `  g )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )
9190exp32 631 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  ( A. g  e.  (Poly `  S
) ( ( g  =  0p  \/  ( (deg `  g
)  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  ->  ( ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G )
)  =  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
9291ralrimdva 2969 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. g  e.  (Poly `  S
) ( ( g  =  0p  \/  ( (deg `  g
)  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( g  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( g  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  ->  A. f  e.  (Poly `  S ) ( ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
9359, 92syl5bi 232 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. f  e.  (Poly `  S
) ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  ->  A. f  e.  (Poly `  S ) ( ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
9493ancld 576 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. f  e.  (Poly `  S
) ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  ->  ( A. f  e.  (Poly `  S )
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  A. f  e.  (Poly `  S )
( ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) ) )
95 dgrcl 23989 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  e.  (Poly `  S
)  ->  (deg `  f
)  e.  NN0 )
9695adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  (deg `  f
)  e.  NN0 )
9796nn0zd 11480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  (deg `  f
)  e.  ZZ )
985ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  G  e.  (Poly `  S ) )
9998, 6syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  (deg `  G
)  e.  NN0 )
10099nn0zd 11480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  (deg `  G
)  e.  ZZ )
10197, 100zsubcld 11487 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  ( (deg `  f )  -  (deg `  G ) )  e.  ZZ )
102 nn0z 11400 . . . . . . . . . . . . . . . . . . . 20  |-  ( d  e.  NN0  ->  d  e.  ZZ )
103102ad2antlr 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  d  e.  ZZ )
104 zleltp1 11428 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (deg `  f
)  -  (deg `  G ) )  e.  ZZ  /\  d  e.  ZZ )  ->  (
( (deg `  f
)  -  (deg `  G ) )  <_ 
d  <->  ( (deg `  f )  -  (deg `  G ) )  < 
( d  +  1 ) ) )
105101, 103, 104syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  ( (
(deg `  f )  -  (deg `  G )
)  <_  d  <->  ( (deg `  f )  -  (deg `  G ) )  < 
( d  +  1 ) ) )
106101zred 11482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  ( (deg `  f )  -  (deg `  G ) )  e.  RR )
107 nn0re 11301 . . . . . . . . . . . . . . . . . . . 20  |-  ( d  e.  NN0  ->  d  e.  RR )
108107ad2antlr 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  d  e.  RR )
109106, 108leloed 10180 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  ( (
(deg `  f )  -  (deg `  G )
)  <_  d  <->  ( (
(deg `  f )  -  (deg `  G )
)  <  d  \/  ( (deg `  f )  -  (deg `  G )
)  =  d ) ) )
110105, 109bitr3d 270 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  ( (
(deg `  f )  -  (deg `  G )
)  <  ( d  +  1 )  <->  ( (
(deg `  f )  -  (deg `  G )
)  <  d  \/  ( (deg `  f )  -  (deg `  G )
)  =  d ) ) )
111110orbi2d 738 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  ( (
f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
( d  +  1 ) )  <->  ( f  =  0p  \/  ( ( (deg `  f )  -  (deg `  G ) )  < 
d  \/  ( (deg
`  f )  -  (deg `  G ) )  =  d ) ) ) )
112 pm5.63 959 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  =  d )  <->  ( f  =  0p  \/  ( -.  f  =  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) ) )
113 df-ne 2795 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =/=  0p  <->  -.  f  =  0p )
114113anbi1i 731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d )  <->  ( -.  f  =  0p  /\  ( (deg `  f
)  -  (deg `  G ) )  =  d ) )
115114orbi2i 541 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  =  0p  \/  ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d ) )  <->  ( f  =  0p  \/  ( -.  f  =  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d ) ) )
116112, 115bitr4i 267 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  =  d )  <->  ( f  =  0p  \/  ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d ) ) )
117116orbi2i 541 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (deg `  f
)  -  (deg `  G ) )  < 
d  \/  ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  =  d ) )  <->  ( (
(deg `  f )  -  (deg `  G )
)  <  d  \/  ( f  =  0p  \/  ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G )
)  =  d ) ) ) )
118 or12 545 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  =  0p  \/  ( ( (deg
`  f )  -  (deg `  G ) )  <  d  \/  (
(deg `  f )  -  (deg `  G )
)  =  d ) )  <->  ( ( (deg
`  f )  -  (deg `  G ) )  <  d  \/  (
f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  =  d ) ) )
119 or12 545 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  =  0p  \/  ( ( (deg
`  f )  -  (deg `  G ) )  <  d  \/  (
f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d ) ) )  <-> 
( ( (deg `  f )  -  (deg `  G ) )  < 
d  \/  ( f  =  0p  \/  ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d ) ) ) )
120117, 118, 1193bitr4i 292 . . . . . . . . . . . . . . . . 17  |-  ( ( f  =  0p  \/  ( ( (deg
`  f )  -  (deg `  G ) )  <  d  \/  (
(deg `  f )  -  (deg `  G )
)  =  d ) )  <->  ( f  =  0p  \/  (
( (deg `  f
)  -  (deg `  G ) )  < 
d  \/  ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G )
)  =  d ) ) ) )
121 orass 546 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  d )  \/  ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d ) )  <->  ( f  =  0p  \/  ( ( (deg `  f )  -  (deg `  G ) )  < 
d  \/  ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G )
)  =  d ) ) ) )
122120, 121bitr4i 267 . . . . . . . . . . . . . . . 16  |-  ( ( f  =  0p  \/  ( ( (deg
`  f )  -  (deg `  G ) )  <  d  \/  (
(deg `  f )  -  (deg `  G )
)  =  d ) )  <->  ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
d )  \/  (
f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d ) ) )
123111, 122syl6bb 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  ( (
f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
( d  +  1 ) )  <->  ( (
f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
d )  \/  (
f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d ) ) ) )
124123imbi1d 331 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  ( (
( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  ( d  +  1 ) )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <-> 
( ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
d )  \/  (
f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d ) )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
125 jaob 822 . . . . . . . . . . . . . 14  |-  ( ( ( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  d )  \/  ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G ) )  =  d ) )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <-> 
( ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G )
)  =  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
126124, 125syl6bb 276 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  S )
)  ->  ( (
( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  ( d  +  1 ) )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <-> 
( ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G )
)  =  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) ) )
127126ralbidva 2985 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. f  e.  (Poly `  S
) ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
( d  +  1 ) )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <->  A. f  e.  (Poly `  S ) ( ( ( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G )
)  =  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) ) )
128 r19.26 3064 . . . . . . . . . . . 12  |-  ( A. f  e.  (Poly `  S
) ( ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  ( ( f  =/=  0p  /\  ( (deg `  f )  -  (deg `  G )
)  =  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )  <->  ( A. f  e.  (Poly `  S )
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  A. f  e.  (Poly `  S )
( ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
129127, 128syl6bb 276 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. f  e.  (Poly `  S
) ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
( d  +  1 ) )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <-> 
( A. f  e.  (Poly `  S )
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  /\  A. f  e.  (Poly `  S )
( ( f  =/=  0p  /\  (
(deg `  f )  -  (deg `  G )
)  =  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) ) )
13094, 129sylibrd 249 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. f  e.  (Poly `  S
) ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  ->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
( d  +  1 ) )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
131130expcom 451 . . . . . . . . 9  |-  ( d  e.  NN0  ->  ( ph  ->  ( A. f  e.  (Poly `  S )
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  ->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
( d  +  1 ) )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) ) )
132131a2d 29 . . . . . . . 8  |-  ( d  e.  NN0  ->  ( (
ph  ->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )  ->  ( ph  ->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
( d  +  1 ) )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) ) )
13319, 24, 29, 24, 46, 132nn0ind 11472 . . . . . . 7  |-  ( d  e.  NN0  ->  ( ph  ->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
13414, 133syl 17 . . . . . 6  |-  ( d  e.  NN  ->  ( ph  ->  A. f  e.  (Poly `  S ) ( ( f  =  0p  \/  ( (deg `  f )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) ) )
135134impcom 446 . . . . 5  |-  ( (
ph  /\  d  e.  NN )  ->  A. f  e.  (Poly `  S )
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) ) )
136 eqeq1 2626 . . . . . . . 8  |-  ( f  =  F  ->  (
f  =  0p  <-> 
F  =  0p ) )
137 fveq2 6191 . . . . . . . . . 10  |-  ( f  =  F  ->  (deg `  f )  =  (deg
`  F ) )
138137oveq1d 6665 . . . . . . . . 9  |-  ( f  =  F  ->  (
(deg `  f )  -  (deg `  G )
)  =  ( (deg
`  F )  -  (deg `  G ) ) )
139138breq1d 4663 . . . . . . . 8  |-  ( f  =  F  ->  (
( (deg `  f
)  -  (deg `  G ) )  < 
d  <->  ( (deg `  F )  -  (deg `  G ) )  < 
d ) )
140136, 139orbi12d 746 . . . . . . 7  |-  ( f  =  F  ->  (
( f  =  0p  \/  ( (deg
`  f )  -  (deg `  G ) )  <  d )  <->  ( F  =  0p  \/  ( (deg `  F
)  -  (deg `  G ) )  < 
d ) ) )
141 oveq1 6657 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f  oF  -  ( G  oF  x.  q ) )  =  ( F  oF  -  ( G  oF  x.  q )
) )
142 plydiv.r . . . . . . . . . . 11  |-  R  =  ( F  oF  -  ( G  oF  x.  q )
)
143141, 142syl6eqr 2674 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f  oF  -  ( G  oF  x.  q ) )  =  R )
144143eqeq1d 2624 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f  oF  -  ( G  oF  x.  q )
)  =  0p  <-> 
R  =  0p ) )
145143fveq2d 6195 . . . . . . . . . 10  |-  ( f  =  F  ->  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  =  (deg
`  R ) )
146145breq1d 4663 . . . . . . . . 9  |-  ( f  =  F  ->  (
(deg `  ( f  oF  -  ( G  oF  x.  q
) ) )  < 
(deg `  G )  <->  (deg
`  R )  < 
(deg `  G )
) )
147144, 146orbi12d 746 . . . . . . . 8  |-  ( f  =  F  ->  (
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) )  <->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) ) )
148147rexbidv 3052 . . . . . . 7  |-  ( f  =  F  ->  ( E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) )  <->  E. q  e.  (Poly `  S )
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) ) ) )
149140, 148imbi12d 334 . . . . . 6  |-  ( f  =  F  ->  (
( ( f  =  0p  \/  (
(deg `  f )  -  (deg `  G )
)  <  d )  ->  E. q  e.  (Poly `  S ) ( ( f  oF  -  ( G  oF  x.  q ) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  <-> 
( ( F  =  0p  \/  (
(deg `  F )  -  (deg `  G )
)  <  d )  ->  E. q  e.  (Poly `  S ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) ) ) )
150149rspcv 3305 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  ( A. f  e.  (Poly `  S
) ( ( f  =  0p  \/  ( (deg `  f
)  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( ( f  oF  -  ( G  oF  x.  q
) )  =  0p  \/  (deg `  ( f  oF  -  ( G  oF  x.  q )
) )  <  (deg `  G ) ) )  ->  ( ( F  =  0p  \/  ( (deg `  F
)  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) ) ) ) )
15113, 135, 150sylc 65 . . . 4  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( F  =  0p  \/  ( (deg `  F )  -  (deg `  G ) )  < 
d )  ->  E. q  e.  (Poly `  S )
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) ) ) )
15212, 151syl5 34 . . 3  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( (deg `  F )  -  (deg `  G )
)  <  d  ->  E. q  e.  (Poly `  S ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) ) )
153152rexlimdva 3031 . 2  |-  ( ph  ->  ( E. d  e.  NN  ( (deg `  F )  -  (deg `  G ) )  < 
d  ->  E. q  e.  (Poly `  S )
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) ) ) )
15411, 153mpd 15 1  |-  ( ph  ->  E. q  e.  (Poly `  S ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ^cexp 12860   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  plydivalg  24054
  Copyright terms: Public domain W3C validator