MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem5 Structured version   Visualization version   Unicode version

Theorem kmlem5 8976
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
kmlem5  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  ( w  \  U. ( x  \  {
w } ) ) )  =  (/) )
Distinct variable group:    x, w, z

Proof of Theorem kmlem5
StepHypRef Expression
1 difss 3737 . . . 4  |-  ( w 
\  U. ( x  \  { w } ) )  C_  w
2 sslin 3839 . . . 4  |-  ( ( w  \  U. (
x  \  { w } ) )  C_  w  ->  ( ( z 
\  U. ( x  \  { z } ) )  i^i  ( w 
\  U. ( x  \  { w } ) ) )  C_  (
( z  \  U. ( x  \  { z } ) )  i^i  w ) )
31, 2ax-mp 5 . . 3  |-  ( ( z  \  U. (
x  \  { z } ) )  i^i  ( w  \  U. ( x  \  { w } ) ) ) 
C_  ( ( z 
\  U. ( x  \  { z } ) )  i^i  w )
4 kmlem4 8975 . . 3  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  w )  =  (/) )
53, 4syl5sseq 3653 . 2  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  ( w  \  U. ( x  \  {
w } ) ) )  C_  (/) )
6 ss0b 3973 . 2  |-  ( ( ( z  \  U. ( x  \  { z } ) )  i^i  ( w  \  U. ( x  \  { w } ) ) ) 
C_  (/)  <->  ( ( z 
\  U. ( x  \  { z } ) )  i^i  ( w 
\  U. ( x  \  { w } ) ) )  =  (/) )
75, 6sylib 208 1  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  ( w  \  U. ( x  \  {
w } ) ) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    =/= wne 2794    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-uni 4437
This theorem is referenced by:  kmlem9  8980
  Copyright terms: Public domain W3C validator