| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kmlem9 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| kmlem9.1 |
|
| Ref | Expression |
|---|---|
| kmlem9 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . 4
| |
| 2 | eqeq1 2626 |
. . . . 5
| |
| 3 | 2 | rexbidv 3052 |
. . . 4
|
| 4 | kmlem9.1 |
. . . 4
| |
| 5 | 1, 3, 4 | elab2 3354 |
. . 3
|
| 6 | vex 3203 |
. . . . 5
| |
| 7 | eqeq1 2626 |
. . . . . 6
| |
| 8 | 7 | rexbidv 3052 |
. . . . 5
|
| 9 | 6, 8, 4 | elab2 3354 |
. . . 4
|
| 10 | difeq1 3721 |
. . . . . . 7
| |
| 11 | sneq 4187 |
. . . . . . . . . 10
| |
| 12 | 11 | difeq2d 3728 |
. . . . . . . . 9
|
| 13 | 12 | unieqd 4446 |
. . . . . . . 8
|
| 14 | 13 | difeq2d 3728 |
. . . . . . 7
|
| 15 | 10, 14 | eqtrd 2656 |
. . . . . 6
|
| 16 | 15 | eqeq2d 2632 |
. . . . 5
|
| 17 | 16 | cbvrexv 3172 |
. . . 4
|
| 18 | 9, 17 | bitri 264 |
. . 3
|
| 19 | reeanv 3107 |
. . . 4
| |
| 20 | eqeq12 2635 |
. . . . . . . . . 10
| |
| 21 | 15, 20 | syl5ibr 236 |
. . . . . . . . 9
|
| 22 | 21 | necon3d 2815 |
. . . . . . . 8
|
| 23 | kmlem5 8976 |
. . . . . . . . . 10
| |
| 24 | ineq12 3809 |
. . . . . . . . . . 11
| |
| 25 | 24 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 26 | 23, 25 | syl5ibr 236 |
. . . . . . . . 9
|
| 27 | 26 | expd 452 |
. . . . . . . 8
|
| 28 | 22, 27 | syl5d 73 |
. . . . . . 7
|
| 29 | 28 | com12 32 |
. . . . . 6
|
| 30 | 29 | adantl 482 |
. . . . 5
|
| 31 | 30 | rexlimivv 3036 |
. . . 4
|
| 32 | 19, 31 | sylbir 225 |
. . 3
|
| 33 | 5, 18, 32 | syl2anb 496 |
. 2
|
| 34 | 33 | rgen2a 2977 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-uni 4437 |
| This theorem is referenced by: kmlem10 8981 |
| Copyright terms: Public domain | W3C validator |