Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linindscl Structured version   Visualization version   Unicode version

Theorem linindscl 42240
Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.)
Assertion
Ref Expression
linindscl  |-  ( S linIndS  M  ->  S  e.  ~P ( Base `  M )
)

Proof of Theorem linindscl
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2622 . . 3  |-  ( 0g
`  M )  =  ( 0g `  M
)
3 eqid 2622 . . 3  |-  (Scalar `  M )  =  (Scalar `  M )
4 eqid 2622 . . 3  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
5 eqid 2622 . . 3  |-  ( 0g
`  (Scalar `  M )
)  =  ( 0g
`  (Scalar `  M )
)
61, 2, 3, 4, 5linindsi 42236 . 2  |-  ( S linIndS  M  ->  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  S ) ( ( f finSupp  ( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) S )  =  ( 0g `  M ) )  ->  A. x  e.  S  ( f `  x
)  =  ( 0g
`  (Scalar `  M )
) ) ) )
76simpld 475 1  |-  ( S linIndS  M  ->  S  e.  ~P ( Base `  M )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ~Pcpw 4158   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   finSupp cfsupp 8275   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   linC clinc 42193   linIndS clininds 42229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-iota 5851  df-fv 5896  df-ov 6653  df-lininds 42231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator