Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linindslinci Structured version   Visualization version   Unicode version

Theorem linindslinci 42237
Description: The implications of being a linearly independent subset and a linear combination of this subset being 0. (Contributed by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islininds.b  |-  B  =  ( Base `  M
)
islininds.z  |-  Z  =  ( 0g `  M
)
islininds.r  |-  R  =  (Scalar `  M )
islininds.e  |-  E  =  ( Base `  R
)
islininds.0  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
linindslinci  |-  ( ( S linIndS  M  /\  ( F  e.  ( E  ^m  S )  /\  F finSupp  .0. 
/\  ( F ( linC  `  M ) S )  =  Z ) )  ->  A. x  e.  S  ( F `  x )  =  .0.  )
Distinct variable groups:    x, M    x, S    x, F
Allowed substitution hints:    B( x)    R( x)    E( x)    .0. ( x)    Z( x)

Proof of Theorem linindslinci
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 islininds.b . . . 4  |-  B  =  ( Base `  M
)
2 islininds.z . . . 4  |-  Z  =  ( 0g `  M
)
3 islininds.r . . . 4  |-  R  =  (Scalar `  M )
4 islininds.e . . . 4  |-  E  =  ( Base `  R
)
5 islininds.0 . . . 4  |-  .0.  =  ( 0g `  R )
61, 2, 3, 4, 5linindsi 42236 . . 3  |-  ( S linIndS  M  ->  ( S  e. 
~P B  /\  A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  ) ) )
7 breq1 4656 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f finSupp  .0.  <->  F finSupp  .0.  ) )
8 oveq1 6657 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f ( linC  `  M
) S )  =  ( F ( linC  `  M ) S ) )
98eqeq1d 2624 . . . . . . . . . 10  |-  ( f  =  F  ->  (
( f ( linC  `  M ) S )  =  Z  <->  ( F
( linC  `  M ) S )  =  Z ) )
107, 9anbi12d 747 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  <->  ( F finSupp  .0. 
/\  ( F ( linC  `  M ) S )  =  Z ) ) )
11 fveq1 6190 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
1211eqeq1d 2624 . . . . . . . . . 10  |-  ( f  =  F  ->  (
( f `  x
)  =  .0.  <->  ( F `  x )  =  .0.  ) )
1312ralbidv 2986 . . . . . . . . 9  |-  ( f  =  F  ->  ( A. x  e.  S  ( f `  x
)  =  .0.  <->  A. x  e.  S  ( F `  x )  =  .0.  ) )
1410, 13imbi12d 334 . . . . . . . 8  |-  ( f  =  F  ->  (
( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )  <->  ( ( F finSupp  .0.  /\  ( F ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( F `  x )  =  .0.  ) ) )
1514rspcv 3305 . . . . . . 7  |-  ( F  e.  ( E  ^m  S )  ->  ( A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )  ->  ( ( F finSupp  .0.  /\  ( F ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( F `  x )  =  .0.  ) ) )
1615com23 86 . . . . . 6  |-  ( F  e.  ( E  ^m  S )  ->  (
( F finSupp  .0.  /\  ( F ( linC  `  M ) S )  =  Z )  ->  ( A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  ->  A. x  e.  S  ( F `  x )  =  .0.  ) ) )
17163impib 1262 . . . . 5  |-  ( ( F  e.  ( E  ^m  S )  /\  F finSupp  .0.  /\  ( F ( linC  `  M ) S )  =  Z )  ->  ( A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  ->  A. x  e.  S  ( F `  x )  =  .0.  ) )
1817com12 32 . . . 4  |-  ( A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  ->  ( ( F  e.  ( E  ^m  S )  /\  F finSupp  .0. 
/\  ( F ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( F `  x )  =  .0.  ) )
1918adantl 482 . . 3  |-  ( ( S  e.  ~P B  /\  A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
)  ->  ( ( F  e.  ( E  ^m  S )  /\  F finSupp  .0. 
/\  ( F ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( F `  x )  =  .0.  ) )
206, 19syl 17 . 2  |-  ( S linIndS  M  ->  ( ( F  e.  ( E  ^m  S )  /\  F finSupp  .0. 
/\  ( F ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( F `  x )  =  .0.  ) )
2120imp 445 1  |-  ( ( S linIndS  M  /\  ( F  e.  ( E  ^m  S )  /\  F finSupp  .0. 
/\  ( F ( linC  `  M ) S )  =  Z ) )  ->  A. x  e.  S  ( F `  x )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ~Pcpw 4158   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   finSupp cfsupp 8275   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   linC clinc 42193   linIndS clininds 42229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-iota 5851  df-fv 5896  df-ov 6653  df-lininds 42231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator