HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophmlem1 Structured version   Visualization version   Unicode version

Theorem lnophmlem1 28875
Description: Lemma for lnophmi 28877. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnophmlem.1  |-  A  e. 
~H
lnophmlem.2  |-  B  e. 
~H
lnophmlem.3  |-  T  e. 
LinOp
lnophmlem.4  |-  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR
Assertion
Ref Expression
lnophmlem1  |-  ( A 
.ih  ( T `  A ) )  e.  RR
Distinct variable groups:    x, A    x, B    x, T

Proof of Theorem lnophmlem1
StepHypRef Expression
1 lnophmlem.1 . 2  |-  A  e. 
~H
2 lnophmlem.4 . 2  |-  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR
3 id 22 . . . . 5  |-  ( x  =  A  ->  x  =  A )
4 fveq2 6191 . . . . 5  |-  ( x  =  A  ->  ( T `  x )  =  ( T `  A ) )
53, 4oveq12d 6668 . . . 4  |-  ( x  =  A  ->  (
x  .ih  ( T `  x ) )  =  ( A  .ih  ( T `  A )
) )
65eleq1d 2686 . . 3  |-  ( x  =  A  ->  (
( x  .ih  ( T `  x )
)  e.  RR  <->  ( A  .ih  ( T `  A
) )  e.  RR ) )
76rspcv 3305 . 2  |-  ( A  e.  ~H  ->  ( A. x  e.  ~H  ( x  .ih  ( T `
 x ) )  e.  RR  ->  ( A  .ih  ( T `  A ) )  e.  RR ) )
81, 2, 7mp2 9 1  |-  ( A 
.ih  ( T `  A ) )  e.  RR
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   RRcr 9935   ~Hchil 27776    .ih csp 27779   LinOpclo 27804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  lnophmlem2  28876
  Copyright terms: Public domain W3C validator