HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophmi Structured version   Visualization version   Unicode version

Theorem lnophmi 28877
Description: A linear operator is Hermitian if  x  .ih  ( T `  x ) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnophm.1  |-  T  e. 
LinOp
lnophm.2  |-  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR
Assertion
Ref Expression
lnophmi  |-  T  e. 
HrmOp
Distinct variable group:    x, T

Proof of Theorem lnophmi
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnophm.1 . . 3  |-  T  e. 
LinOp
21lnopfi 28828 . 2  |-  T : ~H
--> ~H
3 oveq1 6657 . . . . 5  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( y  .ih  ( T `  z )
)  =  ( if ( y  e.  ~H ,  y ,  0h )  .ih  ( T `  z ) ) )
4 fveq2 6191 . . . . . 6  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( T `  y
)  =  ( T `
 if ( y  e.  ~H ,  y ,  0h ) ) )
54oveq1d 6665 . . . . 5  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( ( T `  y )  .ih  z
)  =  ( ( T `  if ( y  e.  ~H , 
y ,  0h )
)  .ih  z )
)
63, 5eqeq12d 2637 . . . 4  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( ( y  .ih  ( T `  z ) )  =  ( ( T `  y ) 
.ih  z )  <->  ( if ( y  e.  ~H ,  y ,  0h )  .ih  ( T `  z ) )  =  ( ( T `  if ( y  e.  ~H ,  y ,  0h ) )  .ih  z
) ) )
7 fveq2 6191 . . . . . 6  |-  ( z  =  if ( z  e.  ~H ,  z ,  0h )  -> 
( T `  z
)  =  ( T `
 if ( z  e.  ~H ,  z ,  0h ) ) )
87oveq2d 6666 . . . . 5  |-  ( z  =  if ( z  e.  ~H ,  z ,  0h )  -> 
( if ( y  e.  ~H ,  y ,  0h )  .ih  ( T `  z ) )  =  ( if ( y  e.  ~H ,  y ,  0h )  .ih  ( T `  if ( z  e.  ~H ,  z ,  0h ) ) ) )
9 oveq2 6658 . . . . 5  |-  ( z  =  if ( z  e.  ~H ,  z ,  0h )  -> 
( ( T `  if ( y  e.  ~H ,  y ,  0h ) )  .ih  z
)  =  ( ( T `  if ( y  e.  ~H , 
y ,  0h )
)  .ih  if (
z  e.  ~H , 
z ,  0h )
) )
108, 9eqeq12d 2637 . . . 4  |-  ( z  =  if ( z  e.  ~H ,  z ,  0h )  -> 
( ( if ( y  e.  ~H , 
y ,  0h )  .ih  ( T `  z
) )  =  ( ( T `  if ( y  e.  ~H ,  y ,  0h ) )  .ih  z
)  <->  ( if ( y  e.  ~H , 
y ,  0h )  .ih  ( T `  if ( z  e.  ~H ,  z ,  0h ) ) )  =  ( ( T `  if ( y  e.  ~H ,  y ,  0h ) )  .ih  if ( z  e.  ~H ,  z ,  0h ) ) ) )
11 ifhvhv0 27879 . . . . 5  |-  if ( y  e.  ~H , 
y ,  0h )  e.  ~H
12 ifhvhv0 27879 . . . . 5  |-  if ( z  e.  ~H , 
z ,  0h )  e.  ~H
13 lnophm.2 . . . . 5  |-  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR
1411, 12, 1, 13lnophmlem2 28876 . . . 4  |-  ( if ( y  e.  ~H ,  y ,  0h )  .ih  ( T `  if ( z  e.  ~H ,  z ,  0h ) ) )  =  ( ( T `  if ( y  e.  ~H ,  y ,  0h ) )  .ih  if ( z  e.  ~H ,  z ,  0h ) )
156, 10, 14dedth2h 4140 . . 3  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  .ih  ( T `  z )
)  =  ( ( T `  y ) 
.ih  z ) )
1615rgen2a 2977 . 2  |-  A. y  e.  ~H  A. z  e. 
~H  ( y  .ih  ( T `  z ) )  =  ( ( T `  y ) 
.ih  z )
17 elhmop 28732 . 2  |-  ( T  e.  HrmOp 
<->  ( T : ~H --> ~H  /\  A. y  e. 
~H  A. z  e.  ~H  ( y  .ih  ( T `  z )
)  =  ( ( T `  y ) 
.ih  z ) ) )
182, 16, 17mpbir2an 955 1  |-  T  e. 
HrmOp
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   A.wral 2912   ifcif 4086   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   ~Hchil 27776    .ih csp 27779   0hc0v 27781   LinOpclo 27804   HrmOpcho 27807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-3 11080  df-4 11081  df-cj 13839  df-re 13840  df-im 13841  df-hvsub 27828  df-lnop 28700  df-hmop 28703
This theorem is referenced by:  lnophm  28878
  Copyright terms: Public domain W3C validator