MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelxr Structured version   Visualization version   Unicode version

Theorem ltrelxr 10099
Description: 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltrelxr  |-  <  C_  ( RR*  X.  RR* )

Proof of Theorem ltrelxr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 10079 . 2  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
2 df-3an 1039 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) )
32opabbii 4717 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }
4 opabssxp 5193 . . . . 5  |-  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }  C_  ( RR  X.  RR )
53, 4eqsstri 3635 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  C_  ( RR  X.  RR )
6 rexpssxrxp 10084 . . . 4  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
75, 6sstri 3612 . . 3  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  C_  ( RR*  X.  RR* )
8 ressxr 10083 . . . . . 6  |-  RR  C_  RR*
9 snsspr2 4346 . . . . . . 7  |-  { -oo } 
C_  { +oo , -oo }
10 ssun2 3777 . . . . . . . 8  |-  { +oo , -oo }  C_  ( RR  u.  { +oo , -oo } )
11 df-xr 10078 . . . . . . . 8  |-  RR*  =  ( RR  u.  { +oo , -oo } )
1210, 11sseqtr4i 3638 . . . . . . 7  |-  { +oo , -oo }  C_  RR*
139, 12sstri 3612 . . . . . 6  |-  { -oo } 
C_  RR*
148, 13unssi 3788 . . . . 5  |-  ( RR  u.  { -oo }
)  C_  RR*
15 snsspr1 4345 . . . . . 6  |-  { +oo } 
C_  { +oo , -oo }
1615, 12sstri 3612 . . . . 5  |-  { +oo } 
C_  RR*
17 xpss12 5225 . . . . 5  |-  ( ( ( RR  u.  { -oo } )  C_  RR*  /\  { +oo }  C_  RR* )  -> 
( ( RR  u.  { -oo } )  X. 
{ +oo } )  C_  ( RR*  X.  RR* )
)
1814, 16, 17mp2an 708 . . . 4  |-  ( ( RR  u.  { -oo } )  X.  { +oo } )  C_  ( RR*  X. 
RR* )
19 xpss12 5225 . . . . 5  |-  ( ( { -oo }  C_  RR* 
/\  RR  C_  RR* )  ->  ( { -oo }  X.  RR )  C_  ( RR*  X.  RR* ) )
2013, 8, 19mp2an 708 . . . 4  |-  ( { -oo }  X.  RR )  C_  ( RR*  X.  RR* )
2118, 20unssi 3788 . . 3  |-  ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) )  C_  ( RR*  X.  RR* )
227, 21unssi 3788 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) ) 
C_  ( RR*  X.  RR* )
231, 22eqsstri 3635 1  |-  <  C_  ( RR*  X.  RR* )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037    e. wcel 1990    u. cun 3572    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653   {copab 4712    X. cxp 5112   RRcr 9935    <RR cltrr 9940   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-pr 4180  df-opab 4713  df-xp 5120  df-xr 10078  df-ltxr 10079
This theorem is referenced by:  ltrel  10100  dfle2  11980  dflt2  11981  itg2gt0cn  33465
  Copyright terms: Public domain W3C validator