Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnset Structured version   Visualization version   Unicode version

Theorem ltrnset 35404
Description: The set of lattice translations for a fiducial co-atom 
W. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l  |-  .<_  =  ( le `  K )
ltrnset.j  |-  .\/  =  ( join `  K )
ltrnset.m  |-  ./\  =  ( meet `  K )
ltrnset.a  |-  A  =  ( Atoms `  K )
ltrnset.h  |-  H  =  ( LHyp `  K
)
ltrnset.d  |-  D  =  ( ( LDil `  K
) `  W )
ltrnset.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnset  |-  ( ( K  e.  B  /\  W  e.  H )  ->  T  =  { f  e.  D  |  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) ) } )
Distinct variable groups:    q, p, A    D, f    f, p, q, K    f, W, p, q
Allowed substitution hints:    A( f)    B( f, q, p)    D( q, p)    T( f, q, p)    H( f, q, p)    .\/ ( f,
q, p)    .<_ ( f, q, p)    ./\ ( f, q, p)

Proof of Theorem ltrnset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ltrnset.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
2 ltrnset.l . . . . 5  |-  .<_  =  ( le `  K )
3 ltrnset.j . . . . 5  |-  .\/  =  ( join `  K )
4 ltrnset.m . . . . 5  |-  ./\  =  ( meet `  K )
5 ltrnset.a . . . . 5  |-  A  =  ( Atoms `  K )
6 ltrnset.h . . . . 5  |-  H  =  ( LHyp `  K
)
72, 3, 4, 5, 6ltrnfset 35403 . . . 4  |-  ( K  e.  B  ->  ( LTrn `  K )  =  ( w  e.  H  |->  { f  e.  ( ( LDil `  K
) `  w )  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) ) } ) )
87fveq1d 6193 . . 3  |-  ( K  e.  B  ->  (
( LTrn `  K ) `  W )  =  ( ( w  e.  H  |->  { f  e.  ( ( LDil `  K
) `  w )  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) ) } ) `  W ) )
91, 8syl5eq 2668 . 2  |-  ( K  e.  B  ->  T  =  ( ( w  e.  H  |->  { f  e.  ( ( LDil `  K ) `  w
)  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  w )  =  ( ( q  .\/  (
f `  q )
)  ./\  w )
) } ) `  W ) )
10 fveq2 6191 . . . . 5  |-  ( w  =  W  ->  (
( LDil `  K ) `  w )  =  ( ( LDil `  K
) `  W )
)
11 ltrnset.d . . . . 5  |-  D  =  ( ( LDil `  K
) `  W )
1210, 11syl6eqr 2674 . . . 4  |-  ( w  =  W  ->  (
( LDil `  K ) `  w )  =  D )
13 breq2 4657 . . . . . . . 8  |-  ( w  =  W  ->  (
p  .<_  w  <->  p  .<_  W ) )
1413notbid 308 . . . . . . 7  |-  ( w  =  W  ->  ( -.  p  .<_  w  <->  -.  p  .<_  W ) )
15 breq2 4657 . . . . . . . 8  |-  ( w  =  W  ->  (
q  .<_  w  <->  q  .<_  W ) )
1615notbid 308 . . . . . . 7  |-  ( w  =  W  ->  ( -.  q  .<_  w  <->  -.  q  .<_  W ) )
1714, 16anbi12d 747 . . . . . 6  |-  ( w  =  W  ->  (
( -.  p  .<_  w  /\  -.  q  .<_  w )  <->  ( -.  p  .<_  W  /\  -.  q  .<_  W ) ) )
18 oveq2 6658 . . . . . . 7  |-  ( w  =  W  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( p 
.\/  ( f `  p ) )  ./\  W ) )
19 oveq2 6658 . . . . . . 7  |-  ( w  =  W  ->  (
( q  .\/  (
f `  q )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) )
2018, 19eqeq12d 2637 . . . . . 6  |-  ( w  =  W  ->  (
( ( p  .\/  ( f `  p
) )  ./\  w
)  =  ( ( q  .\/  ( f `
 q ) ) 
./\  w )  <->  ( (
p  .\/  ( f `  p ) )  ./\  W )  =  ( ( q  .\/  ( f `
 q ) ) 
./\  W ) ) )
2117, 20imbi12d 334 . . . . 5  |-  ( w  =  W  ->  (
( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) )  <->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  W )  =  ( ( q  .\/  ( f `
 q ) ) 
./\  W ) ) ) )
22212ralbidv 2989 . . . 4  |-  ( w  =  W  ->  ( A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) )  <->  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  W )  =  ( ( q  .\/  ( f `
 q ) ) 
./\  W ) ) ) )
2312, 22rabeqbidv 3195 . . 3  |-  ( w  =  W  ->  { f  e.  ( ( LDil `  K ) `  w
)  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  w )  =  ( ( q  .\/  (
f `  q )
)  ./\  w )
) }  =  {
f  e.  D  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) ) } )
24 eqid 2622 . . 3  |-  ( w  e.  H  |->  { f  e.  ( ( LDil `  K ) `  w
)  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  w )  =  ( ( q  .\/  (
f `  q )
)  ./\  w )
) } )  =  ( w  e.  H  |->  { f  e.  ( ( LDil `  K
) `  w )  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) ) } )
25 fvex 6201 . . . . 5  |-  ( (
LDil `  K ) `  W )  e.  _V
2611, 25eqeltri 2697 . . . 4  |-  D  e. 
_V
2726rabex 4813 . . 3  |-  { f  e.  D  |  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) ) }  e.  _V
2823, 24, 27fvmpt 6282 . 2  |-  ( W  e.  H  ->  (
( w  e.  H  |->  { f  e.  ( ( LDil `  K
) `  w )  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) ) } ) `  W )  =  { f  e.  D  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  W )  =  ( ( q  .\/  ( f `
 q ) ) 
./\  W ) ) } )
299, 28sylan9eq 2676 1  |-  ( ( K  e.  B  /\  W  e.  H )  ->  T  =  { f  e.  D  |  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   LHypclh 35270   LDilcldil 35386   LTrncltrn 35387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-ltrn 35391
This theorem is referenced by:  isltrn  35405
  Copyright terms: Public domain W3C validator