MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1rhmval Structured version   Visualization version   Unicode version

Theorem mat1rhmval 20285
Description: The value of the ring homomorphism  F. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k  |-  K  =  ( Base `  R
)
mat1rhmval.a  |-  A  =  ( { E } Mat  R )
mat1rhmval.b  |-  B  =  ( Base `  A
)
mat1rhmval.o  |-  O  = 
<. E ,  E >.
mat1rhmval.f  |-  F  =  ( x  e.  K  |->  { <. O ,  x >. } )
Assertion
Ref Expression
mat1rhmval  |-  ( ( R  e.  Ring  /\  E  e.  V  /\  X  e.  K )  ->  ( F `  X )  =  { <. O ,  X >. } )
Distinct variable groups:    x, K    x, O    x, E    x, R    x, V    x, X
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem mat1rhmval
StepHypRef Expression
1 mat1rhmval.f . . 3  |-  F  =  ( x  e.  K  |->  { <. O ,  x >. } )
21a1i 11 . 2  |-  ( ( R  e.  Ring  /\  E  e.  V  /\  X  e.  K )  ->  F  =  ( x  e.  K  |->  { <. O ,  x >. } ) )
3 opeq2 4403 . . . 4  |-  ( x  =  X  ->  <. O ,  x >.  =  <. O ,  X >. )
43sneqd 4189 . . 3  |-  ( x  =  X  ->  { <. O ,  x >. }  =  { <. O ,  X >. } )
54adantl 482 . 2  |-  ( ( ( R  e.  Ring  /\  E  e.  V  /\  X  e.  K )  /\  x  =  X
)  ->  { <. O ,  x >. }  =  { <. O ,  X >. } )
6 simp3 1063 . 2  |-  ( ( R  e.  Ring  /\  E  e.  V  /\  X  e.  K )  ->  X  e.  K )
7 snex 4908 . . 3  |-  { <. O ,  X >. }  e.  _V
87a1i 11 . 2  |-  ( ( R  e.  Ring  /\  E  e.  V  /\  X  e.  K )  ->  { <. O ,  X >. }  e.  _V )
92, 5, 6, 8fvmptd 6288 1  |-  ( ( R  e.  Ring  /\  E  e.  V  /\  X  e.  K )  ->  ( F `  X )  =  { <. O ,  X >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Ringcrg 18547   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  mat1rhmelval  20286  mat1rhmcl  20287  mat1mhm  20290
  Copyright terms: Public domain W3C validator