MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matval Structured version   Visualization version   Unicode version

Theorem matval 20217
Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypotheses
Ref Expression
matval.a  |-  A  =  ( N Mat  R )
matval.g  |-  G  =  ( R freeLMod  ( N  X.  N ) )
matval.t  |-  .x.  =  ( R maMul  <. N ,  N ,  N >. )
Assertion
Ref Expression
matval  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  A  =  ( G sSet  <. ( .r `  ndx ) ,  .x.  >. )
)

Proof of Theorem matval
Dummy variables  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matval.a . 2  |-  A  =  ( N Mat  R )
2 elex 3212 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
3 id 22 . . . . . . 7  |-  ( r  =  R  ->  r  =  R )
4 id 22 . . . . . . . 8  |-  ( n  =  N  ->  n  =  N )
54sqxpeqd 5141 . . . . . . 7  |-  ( n  =  N  ->  (
n  X.  n )  =  ( N  X.  N ) )
63, 5oveqan12rd 6670 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( r freeLMod  ( n  X.  n ) )  =  ( R freeLMod  ( N  X.  N ) ) )
7 matval.g . . . . . 6  |-  G  =  ( R freeLMod  ( N  X.  N ) )
86, 7syl6eqr 2674 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( r freeLMod  ( n  X.  n ) )  =  G )
94, 4, 4oteq123d 4417 . . . . . . . 8  |-  ( n  =  N  ->  <. n ,  n ,  n >.  = 
<. N ,  N ,  N >. )
103, 9oveqan12rd 6670 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( r maMul  <. n ,  n ,  n >. )  =  ( R maMul  <. N ,  N ,  N >. ) )
11 matval.t . . . . . . 7  |-  .x.  =  ( R maMul  <. N ,  N ,  N >. )
1210, 11syl6eqr 2674 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( r maMul  <. n ,  n ,  n >. )  =  .x.  )
1312opeq2d 4409 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  -> 
<. ( .r `  ndx ) ,  ( r maMul  <.
n ,  n ,  n >. ) >.  =  <. ( .r `  ndx ) ,  .x.  >. )
148, 13oveq12d 6668 . . . 4  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ( r freeLMod  (
n  X.  n ) ) sSet  <. ( .r `  ndx ) ,  ( r maMul  <. n ,  n ,  n >. ) >. )  =  ( G sSet  <. ( .r `  ndx ) ,  .x.  >. ) )
15 df-mat 20214 . . . 4  |- Mat  =  ( n  e.  Fin , 
r  e.  _V  |->  ( ( r freeLMod  ( n  X.  n ) ) sSet  <. ( .r `  ndx ) ,  ( r maMul  <.
n ,  n ,  n >. ) >. )
)
16 ovex 6678 . . . 4  |-  ( G sSet  <. ( .r `  ndx ) ,  .x.  >. )  e.  _V
1714, 15, 16ovmpt2a 6791 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  _V )  ->  ( N Mat  R )  =  ( G sSet  <. ( .r `  ndx ) ,  .x.  >. ) )
182, 17sylan2 491 . 2  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( N Mat  R )  =  ( G sSet  <. ( .r `  ndx ) ,  .x.  >. ) )
191, 18syl5eq 2668 1  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  A  =  ( G sSet  <. ( .r `  ndx ) ,  .x.  >. )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   <.cotp 4185    X. cxp 5112   ` cfv 5888  (class class class)co 6650   Fincfn 7955   ndxcnx 15854   sSet csts 15855   .rcmulr 15942   freeLMod cfrlm 20090   maMul cmmul 20189   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-mat 20214
This theorem is referenced by:  matbas  20219  matplusg  20220  matsca  20221  matvsca  20222  matmulr  20244
  Copyright terms: Public domain W3C validator