MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopick Structured version   Visualization version   Unicode version

Theorem mopick 2535
Description: "At most one" picks a variable value, eliminating an existential quantifier. (Contributed by NM, 27-Jan-1997.) (Proof shortened by Wolf Lammen, 17-Sep-2019.)
Assertion
Ref Expression
mopick  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )

Proof of Theorem mopick
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mo2v 2477 . . 3  |-  ( E* x ph  <->  E. y A. x ( ph  ->  x  =  y ) )
2 sp 2053 . . . . 5  |-  ( A. x ( ph  ->  x  =  y )  -> 
( ph  ->  x  =  y ) )
3 pm3.45 879 . . . . . . 7  |-  ( (
ph  ->  x  =  y )  ->  ( ( ph  /\  ps )  -> 
( x  =  y  /\  ps ) ) )
43aleximi 1759 . . . . . 6  |-  ( A. x ( ph  ->  x  =  y )  -> 
( E. x (
ph  /\  ps )  ->  E. x ( x  =  y  /\  ps ) ) )
5 sb56 2150 . . . . . . 7  |-  ( E. x ( x  =  y  /\  ps )  <->  A. x ( x  =  y  ->  ps )
)
6 sp 2053 . . . . . . 7  |-  ( A. x ( x  =  y  ->  ps )  ->  ( x  =  y  ->  ps ) )
75, 6sylbi 207 . . . . . 6  |-  ( E. x ( x  =  y  /\  ps )  ->  ( x  =  y  ->  ps ) )
84, 7syl6 35 . . . . 5  |-  ( A. x ( ph  ->  x  =  y )  -> 
( E. x (
ph  /\  ps )  ->  ( x  =  y  ->  ps ) ) )
92, 8syl5d 73 . . . 4  |-  ( A. x ( ph  ->  x  =  y )  -> 
( E. x (
ph  /\  ps )  ->  ( ph  ->  ps ) ) )
109exlimiv 1858 . . 3  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  ( E. x ( ph  /\  ps )  ->  ( ph  ->  ps ) ) )
111, 10sylbi 207 . 2  |-  ( E* x ph  ->  ( E. x ( ph  /\  ps )  ->  ( ph  ->  ps ) ) )
1211imp 445 1  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   E.wex 1704   E*wmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475
This theorem is referenced by:  eupick  2536  mopick2  2540  moexex  2541  morex  3390  imadif  5973  cmetss  23113
  Copyright terms: Public domain W3C validator