MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadif Structured version   Visualization version   Unicode version

Theorem imadif 5973
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
imadif  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )

Proof of Theorem imadif
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anandir 872 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
21exbii 1774 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  <->  E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
3 19.40 1797 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
42, 3sylbi 207 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
5 nfv 1843 . . . . . . . . . . 11  |-  F/ x Fun  `' F
6 nfe1 2027 . . . . . . . . . . 11  |-  F/ x E. x ( x F y  /\  -.  x  e.  B )
75, 6nfan 1828 . . . . . . . . . 10  |-  F/ x
( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B )
)
8 funmo 5904 . . . . . . . . . . . . . 14  |-  ( Fun  `' F  ->  E* x  y `' F x )
9 vex 3203 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
10 vex 3203 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
119, 10brcnv 5305 . . . . . . . . . . . . . . 15  |-  ( y `' F x  <->  x F
y )
1211mobii 2493 . . . . . . . . . . . . . 14  |-  ( E* x  y `' F x 
<->  E* x  x F y )
138, 12sylib 208 . . . . . . . . . . . . 13  |-  ( Fun  `' F  ->  E* x  x F y )
14 mopick 2535 . . . . . . . . . . . . 13  |-  ( ( E* x  x F y  /\  E. x
( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1513, 14sylan 488 . . . . . . . . . . . 12  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1615con2d 129 . . . . . . . . . . 11  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x  e.  B  ->  -.  x F y ) )
17 imnan 438 . . . . . . . . . . 11  |-  ( ( x  e.  B  ->  -.  x F y )  <->  -.  ( x  e.  B  /\  x F y ) )
1816, 17sylib 208 . . . . . . . . . 10  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  -.  ( x  e.  B  /\  x F y ) )
197, 18alrimi 2082 . . . . . . . . 9  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  A. x  -.  (
x  e.  B  /\  x F y ) )
2019ex 450 . . . . . . . 8  |-  ( Fun  `' F  ->  ( E. x ( x F y  /\  -.  x  e.  B )  ->  A. x  -.  ( x  e.  B  /\  x F y ) ) )
21 exancom 1787 . . . . . . . 8  |-  ( E. x ( x F y  /\  -.  x  e.  B )  <->  E. x
( -.  x  e.  B  /\  x F y ) )
22 alnex 1706 . . . . . . . 8  |-  ( A. x  -.  ( x  e.  B  /\  x F y )  <->  -.  E. x
( x  e.  B  /\  x F y ) )
2320, 21, 223imtr3g 284 . . . . . . 7  |-  ( Fun  `' F  ->  ( E. x ( -.  x  e.  B  /\  x F y )  ->  -.  E. x ( x  e.  B  /\  x F y ) ) )
2423anim2d 589 . . . . . 6  |-  ( Fun  `' F  ->  ( ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
254, 24syl5 34 . . . . 5  |-  ( Fun  `' F  ->  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
26 19.29r 1802 . . . . . . 7  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  A. x  -.  ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) ) )
2722, 26sylan2br 493 . . . . . 6  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) ) )
28 andi 911 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  \/  -.  x F y ) )  <-> 
( ( ( x  e.  A  /\  x F y )  /\  -.  x  e.  B
)  \/  ( ( x  e.  A  /\  x F y )  /\  -.  x F y ) ) )
29 ianor 509 . . . . . . . . 9  |-  ( -.  ( x  e.  B  /\  x F y )  <-> 
( -.  x  e.  B  \/  -.  x F y ) )
3029anbi2i 730 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  <-> 
( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  \/  -.  x F y ) ) )
31 an32 839 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  -.  x  e.  B
) )
32 pm3.24 926 . . . . . . . . . . . 12  |-  -.  (
x F y  /\  -.  x F y )
3332intnan 960 . . . . . . . . . . 11  |-  -.  (
x  e.  A  /\  ( x F y  /\  -.  x F y ) )
34 anass 681 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  x F y )  <->  ( x  e.  A  /\  (
x F y  /\  -.  x F y ) ) )
3533, 34mtbir 313 . . . . . . . . . 10  |-  -.  (
( x  e.  A  /\  x F y )  /\  -.  x F y )
3635biorfi 422 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  x  e.  B )  <->  ( (
( x  e.  A  /\  x F y )  /\  -.  x  e.  B )  \/  (
( x  e.  A  /\  x F y )  /\  -.  x F y ) ) )
3731, 36bitri 264 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
( x  e.  A  /\  x F y )  /\  -.  x  e.  B )  \/  (
( x  e.  A  /\  x F y )  /\  -.  x F y ) ) )
3828, 30, 373bitr4i 292 . . . . . . 7  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  <-> 
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
3938exbii 1774 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  <->  E. x ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
4027, 39sylib 208 . . . . 5  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
4125, 40impbid1 215 . . . 4  |-  ( Fun  `' F  ->  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  <-> 
( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) ) ) )
42 eldif 3584 . . . . . 6  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
4342anbi1i 731 . . . . 5  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
4443exbii 1774 . . . 4  |-  ( E. x ( x  e.  ( A  \  B
)  /\  x F
y )  <->  E. x
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
459elima2 5472 . . . . 5  |-  ( y  e.  ( F " A )  <->  E. x
( x  e.  A  /\  x F y ) )
469elima2 5472 . . . . . 6  |-  ( y  e.  ( F " B )  <->  E. x
( x  e.  B  /\  x F y ) )
4746notbii 310 . . . . 5  |-  ( -.  y  e.  ( F
" B )  <->  -.  E. x
( x  e.  B  /\  x F y ) )
4845, 47anbi12i 733 . . . 4  |-  ( ( y  e.  ( F
" A )  /\  -.  y  e.  ( F " B ) )  <-> 
( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) ) )
4941, 44, 483bitr4g 303 . . 3  |-  ( Fun  `' F  ->  ( E. x ( x  e.  ( A  \  B
)  /\  x F
y )  <->  ( y  e.  ( F " A
)  /\  -.  y  e.  ( F " B
) ) ) )
509elima2 5472 . . 3  |-  ( y  e.  ( F "
( A  \  B
) )  <->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
51 eldif 3584 . . 3  |-  ( y  e.  ( ( F
" A )  \ 
( F " B
) )  <->  ( y  e.  ( F " A
)  /\  -.  y  e.  ( F " B
) ) )
5249, 50, 513bitr4g 303 . 2  |-  ( Fun  `' F  ->  ( y  e.  ( F "
( A  \  B
) )  <->  y  e.  ( ( F " A )  \  ( F " B ) ) ) )
5352eqrdv 2620 1  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E*wmo 2471    \ cdif 3571   class class class wbr 4653   `'ccnv 5113   "cima 5117   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890
This theorem is referenced by:  imain  5974  resdif  6157  difpreima  6343  domunsncan  8060  phplem4  8142  php3  8146  infdifsn  8554  cantnfp1lem3  8577  enfin1ai  9206  fin1a2lem7  9228  symgfixelsi  17855  dprdf1o  18431  frlmlbs  20136  f1lindf  20161  cnclima  21072  iscncl  21073  qtopcld  21516  qtoprest  21520  qtopcmap  21522  mbfimaicc  23400  ismbf3d  23421  i1fd  23448  ballotlemfrc  30588  poimirlem2  33411  poimirlem4  33413  poimirlem6  33415  poimirlem7  33416  poimirlem9  33418  poimirlem11  33420  poimirlem12  33421  poimirlem13  33422  poimirlem14  33423  poimirlem16  33425  poimirlem19  33428  poimirlem23  33432
  Copyright terms: Public domain W3C validator