MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mo2v Structured version   Visualization version   Unicode version

Theorem mo2v 2477
Description: Alternate definition of "at most one." Unlike mo2 2479, which is slightly more general, it does not depend on ax-11 2034 and ax-13 2246, whence it is preferable within predicate logic. Elsewhere, most theorems depend on these axioms anyway, so this advantage is no longer important. (Contributed by Wolf Lammen, 27-May-2019.) (Proof shortened by Wolf Lammen, 10-Nov-2019.)
Assertion
Ref Expression
mo2v  |-  ( E* x ph  <->  E. y A. x ( ph  ->  x  =  y ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem mo2v
StepHypRef Expression
1 df-mo 2475 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
2 df-eu 2474 . . 3  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
32imbi2i 326 . 2  |-  ( ( E. x ph  ->  E! x ph )  <->  ( E. x ph  ->  E. y A. x ( ph  <->  x  =  y ) ) )
4 alnex 1706 . . . . . . 7  |-  ( A. x  -.  ph  <->  -.  E. x ph )
5 pm2.21 120 . . . . . . . 8  |-  ( -. 
ph  ->  ( ph  ->  x  =  y ) )
65alimi 1739 . . . . . . 7  |-  ( A. x  -.  ph  ->  A. x
( ph  ->  x  =  y ) )
74, 6sylbir 225 . . . . . 6  |-  ( -. 
E. x ph  ->  A. x ( ph  ->  x  =  y ) )
87eximi 1762 . . . . 5  |-  ( E. y  -.  E. x ph  ->  E. y A. x
( ph  ->  x  =  y ) )
9819.23bi 2061 . . . 4  |-  ( -. 
E. x ph  ->  E. y A. x (
ph  ->  x  =  y ) )
10 biimp 205 . . . . . 6  |-  ( (
ph 
<->  x  =  y )  ->  ( ph  ->  x  =  y ) )
1110alimi 1739 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  ->  A. x
( ph  ->  x  =  y ) )
1211eximi 1762 . . . 4  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  E. y A. x
( ph  ->  x  =  y ) )
139, 12ja 173 . . 3  |-  ( ( E. x ph  ->  E. y A. x (
ph 
<->  x  =  y ) )  ->  E. y A. x ( ph  ->  x  =  y ) )
14 nfia1 2030 . . . . . 6  |-  F/ x
( A. x (
ph  ->  x  =  y )  ->  A. x
( ph  <->  x  =  y
) )
15 id 22 . . . . . . . . . 10  |-  ( ph  ->  ph )
16 ax12v 2048 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) )
1716com12 32 . . . . . . . . . 10  |-  ( ph  ->  ( x  =  y  ->  A. x ( x  =  y  ->  ph )
) )
1815, 17embantd 59 . . . . . . . . 9  |-  ( ph  ->  ( ( ph  ->  x  =  y )  ->  A. x ( x  =  y  ->  ph ) ) )
1918spsd 2057 . . . . . . . 8  |-  ( ph  ->  ( A. x (
ph  ->  x  =  y )  ->  A. x
( x  =  y  ->  ph ) ) )
2019ancld 576 . . . . . . 7  |-  ( ph  ->  ( A. x (
ph  ->  x  =  y )  ->  ( A. x ( ph  ->  x  =  y )  /\  A. x ( x  =  y  ->  ph ) ) ) )
21 albiim 1816 . . . . . . 7  |-  ( A. x ( ph  <->  x  =  y )  <->  ( A. x ( ph  ->  x  =  y )  /\  A. x ( x  =  y  ->  ph ) ) )
2220, 21syl6ibr 242 . . . . . 6  |-  ( ph  ->  ( A. x (
ph  ->  x  =  y )  ->  A. x
( ph  <->  x  =  y
) ) )
2314, 22exlimi 2086 . . . . 5  |-  ( E. x ph  ->  ( A. x ( ph  ->  x  =  y )  ->  A. x ( ph  <->  x  =  y ) ) )
2423eximdv 1846 . . . 4  |-  ( E. x ph  ->  ( E. y A. x (
ph  ->  x  =  y )  ->  E. y A. x ( ph  <->  x  =  y ) ) )
2524com12 32 . . 3  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  ( E. x ph  ->  E. y A. x ( ph  <->  x  =  y ) ) )
2613, 25impbii 199 . 2  |-  ( ( E. x ph  ->  E. y A. x (
ph 
<->  x  =  y ) )  <->  E. y A. x
( ph  ->  x  =  y ) )
271, 3, 263bitri 286 1  |-  ( E* x ph  <->  E. y A. x ( ph  ->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704   E!weu 2470   E*wmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475
This theorem is referenced by:  mo2  2479  eu3v  2498  mo3  2507  sbmo  2515  moim  2519  mopick  2535  2mo2  2550  mo2icl  3385  moabex  4927  dffun3  5899  dffun6f  5902  grothprim  9656  bj-mo3OLD  32832  wl-mo2df  33352  wl-mo2t  33357  wl-mo3t  33358  dffrege115  38272
  Copyright terms: Public domain W3C validator