| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mo2v | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of "at most one." Unlike mo2 2479, which is slightly more general, it does not depend on ax-11 2034 and ax-13 2246, whence it is preferable within predicate logic. Elsewhere, most theorems depend on these axioms anyway, so this advantage is no longer important. (Contributed by Wolf Lammen, 27-May-2019.) (Proof shortened by Wolf Lammen, 10-Nov-2019.) |
| Ref | Expression |
|---|---|
| mo2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo 2475 |
. 2
| |
| 2 | df-eu 2474 |
. . 3
| |
| 3 | 2 | imbi2i 326 |
. 2
|
| 4 | alnex 1706 |
. . . . . . 7
| |
| 5 | pm2.21 120 |
. . . . . . . 8
| |
| 6 | 5 | alimi 1739 |
. . . . . . 7
|
| 7 | 4, 6 | sylbir 225 |
. . . . . 6
|
| 8 | 7 | eximi 1762 |
. . . . 5
|
| 9 | 8 | 19.23bi 2061 |
. . . 4
|
| 10 | biimp 205 |
. . . . . 6
| |
| 11 | 10 | alimi 1739 |
. . . . 5
|
| 12 | 11 | eximi 1762 |
. . . 4
|
| 13 | 9, 12 | ja 173 |
. . 3
|
| 14 | nfia1 2030 |
. . . . . 6
| |
| 15 | id 22 |
. . . . . . . . . 10
| |
| 16 | ax12v 2048 |
. . . . . . . . . . 11
| |
| 17 | 16 | com12 32 |
. . . . . . . . . 10
|
| 18 | 15, 17 | embantd 59 |
. . . . . . . . 9
|
| 19 | 18 | spsd 2057 |
. . . . . . . 8
|
| 20 | 19 | ancld 576 |
. . . . . . 7
|
| 21 | albiim 1816 |
. . . . . . 7
| |
| 22 | 20, 21 | syl6ibr 242 |
. . . . . 6
|
| 23 | 14, 22 | exlimi 2086 |
. . . . 5
|
| 24 | 23 | eximdv 1846 |
. . . 4
|
| 25 | 24 | com12 32 |
. . 3
|
| 26 | 13, 25 | impbii 199 |
. 2
|
| 27 | 1, 3, 26 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: mo2 2479 eu3v 2498 mo3 2507 sbmo 2515 moim 2519 mopick 2535 2mo2 2550 mo2icl 3385 moabex 4927 dffun3 5899 dffun6f 5902 grothprim 9656 bj-mo3OLD 32832 wl-mo2df 33352 wl-mo2t 33357 wl-mo3t 33358 dffrege115 38272 |
| Copyright terms: Public domain | W3C validator |