MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetss Structured version   Visualization version   Unicode version

Theorem cmetss 23113
Description: A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of [Kreyszig] p. 30. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cmetss.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
cmetss  |-  ( D  e.  ( CMet `  X
)  ->  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  Y  e.  ( Clsd `  J ) ) )

Proof of Theorem cmetss
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetmet 23084 . . . . . . . . 9  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
2 metxmet 22139 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
31, 2syl 17 . . . . . . . 8  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( *Met `  X
) )
43adantr 481 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  D  e.  ( *Met `  X ) )
5 cmetss.2 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
65mopntopon 22244 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
74, 6syl 17 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  J  e.  (TopOn `  X )
)
8 resss 5422 . . . . . . . 8  |-  ( D  |`  ( Y  X.  Y
) )  C_  D
9 dmss 5323 . . . . . . . 8  |-  ( ( D  |`  ( Y  X.  Y ) )  C_  D  ->  dom  ( D  |`  ( Y  X.  Y
) )  C_  dom  D )
10 dmss 5323 . . . . . . . 8  |-  ( dom  ( D  |`  ( Y  X.  Y ) ) 
C_  dom  D  ->  dom 
dom  ( D  |`  ( Y  X.  Y
) )  C_  dom  dom 
D )
118, 9, 10mp2b 10 . . . . . . 7  |-  dom  dom  ( D  |`  ( Y  X.  Y ) ) 
C_  dom  dom  D
12 cmetmet 23084 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( Met `  Y ) )
13 metdmdm 22141 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
)  ->  Y  =  dom  dom  ( D  |`  ( Y  X.  Y
) ) )
1412, 13syl 17 . . . . . . . 8  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  ->  Y  =  dom  dom  ( D  |`  ( Y  X.  Y
) ) )
15 metdmdm 22141 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  X  =  dom  dom  D )
161, 15syl 17 . . . . . . . 8  |-  ( D  e.  ( CMet `  X
)  ->  X  =  dom  dom  D )
17 sseq12 3628 . . . . . . . 8  |-  ( ( Y  =  dom  dom  ( D  |`  ( Y  X.  Y ) )  /\  X  =  dom  dom 
D )  ->  ( Y  C_  X  <->  dom  dom  ( D  |`  ( Y  X.  Y ) )  C_  dom  dom  D ) )
1814, 16, 17syl2anr 495 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( Y  C_  X  <->  dom  dom  ( D  |`  ( Y  X.  Y ) )  C_  dom  dom  D ) )
1911, 18mpbiri 248 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  C_  X )
20 flimcls 21789 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  <->  E. f  e.  ( Fil `  X
) ( Y  e.  f  /\  x  e.  ( J  fLim  f
) ) ) )
217, 19, 20syl2anc 693 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  <->  E. f  e.  ( Fil `  X
) ( Y  e.  f  /\  x  e.  ( J  fLim  f
) ) ) )
22 simprrr 805 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  x  e.  ( J  fLim  f ) )
234adantr 481 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  D  e.  ( *Met `  X
) )
245methaus 22325 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Haus )
25 hausflimi 21784 . . . . . . . . 9  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  f ) )
2623, 24, 253syl 18 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  E* x  x  e.  ( J  fLim  f ) )
2723, 6syl 17 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  J  e.  (TopOn `  X ) )
28 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  f  e.  ( Fil `  X ) )
29 simprrl 804 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  Y  e.  f )
30 flimrest 21787 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  f  e.  ( Fil `  X
)  /\  Y  e.  f )  ->  (
( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( J  fLim  f )  i^i  Y ) )
3127, 28, 29, 30syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( J  fLim  f )  i^i  Y ) )
3219adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  Y  C_  X
)
33 eqid 2622 . . . . . . . . . . . . . 14  |-  ( D  |`  ( Y  X.  Y
) )  =  ( D  |`  ( Y  X.  Y ) )
34 eqid 2622 . . . . . . . . . . . . . 14  |-  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )
3533, 5, 34metrest 22329 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
3623, 32, 35syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
3736oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) 
fLim  ( ft  Y ) ) )
3831, 37eqtr3d 2658 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( J  fLim  f )  i^i 
Y )  =  ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) ) )
39 simplr 792 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( D  |`  ( Y  X.  Y
) )  e.  (
CMet `  Y )
)
405flimcfil 23112 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  ( J  fLim  f )
)  ->  f  e.  (CauFil `  D ) )
4123, 22, 40syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  f  e.  (CauFil `  D ) )
42 cfilres 23094 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  f  e.  ( Fil `  X )  /\  Y  e.  f )  ->  ( f  e.  (CauFil `  D )  <->  ( ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
4323, 28, 29, 42syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( f  e.  (CauFil `  D )  <->  ( ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
4441, 43mpbid 222 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ft  Y
)  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )
4534cmetcvg 23083 . . . . . . . . . . 11  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  /\  ( ft  Y
)  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) )  =/=  (/) )
4639, 44, 45syl2anc 693 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) )  =/=  (/) )
4738, 46eqnetrd 2861 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( J  fLim  f )  i^i 
Y )  =/=  (/) )
48 n0 3931 . . . . . . . . . 10  |-  ( ( ( J  fLim  f
)  i^i  Y )  =/=  (/)  <->  E. x  x  e.  ( ( J  fLim  f )  i^i  Y ) )
49 elin 3796 . . . . . . . . . . 11  |-  ( x  e.  ( ( J 
fLim  f )  i^i 
Y )  <->  ( x  e.  ( J  fLim  f
)  /\  x  e.  Y ) )
5049exbii 1774 . . . . . . . . . 10  |-  ( E. x  x  e.  ( ( J  fLim  f
)  i^i  Y )  <->  E. x ( x  e.  ( J  fLim  f
)  /\  x  e.  Y ) )
5148, 50bitri 264 . . . . . . . . 9  |-  ( ( ( J  fLim  f
)  i^i  Y )  =/=  (/)  <->  E. x ( x  e.  ( J  fLim  f )  /\  x  e.  Y ) )
5247, 51sylib 208 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  E. x
( x  e.  ( J  fLim  f )  /\  x  e.  Y
) )
53 mopick 2535 . . . . . . . 8  |-  ( ( E* x  x  e.  ( J  fLim  f
)  /\  E. x
( x  e.  ( J  fLim  f )  /\  x  e.  Y
) )  ->  (
x  e.  ( J 
fLim  f )  ->  x  e.  Y )
)
5426, 52, 53syl2anc 693 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( x  e.  ( J  fLim  f
)  ->  x  e.  Y ) )
5522, 54mpd 15 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  x  e.  Y )
5655rexlimdvaa 3032 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( E. f  e.  ( Fil `  X ) ( Y  e.  f  /\  x  e.  ( J  fLim  f ) )  ->  x  e.  Y )
)
5721, 56sylbid 230 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  ->  x  e.  Y )
)
5857ssrdv 3609 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
( cls `  J
) `  Y )  C_  Y )
595mopntop 22245 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
604, 59syl 17 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  J  e.  Top )
615mopnuni 22246 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
624, 61syl 17 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  X  =  U. J )
6319, 62sseqtrd 3641 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  C_ 
U. J )
64 eqid 2622 . . . . 5  |-  U. J  =  U. J
6564iscld4 20869 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  U. J )  ->  ( Y  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  Y
)  C_  Y )
)
6660, 63, 65syl2anc 693 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( Y  e.  ( Clsd `  J )  <->  ( ( cls `  J ) `  Y )  C_  Y
) )
6758, 66mpbird 247 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  e.  ( Clsd `  J
) )
681adantr 481 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  D  e.  ( Met `  X
) )
6964cldss 20833 . . . . . 6  |-  ( Y  e.  ( Clsd `  J
)  ->  Y  C_  U. J
)
7069adantl 482 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  Y  C_ 
U. J )
7168, 2, 613syl 18 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  X  =  U. J )
7270, 71sseqtr4d 3642 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  Y  C_  X )
73 metres2 22168 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
7468, 72, 73syl2anc 693 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
753ad2antrr 762 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  D  e.  ( *Met `  X ) )
7672adantr 481 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  C_  X )
7775, 76, 35syl2anc 693 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( Jt  Y )  =  (
MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) )
7877eqcomd 2628 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) )  =  ( Jt  Y ) )
79 metxmet 22139 . . . . . . . . . . 11  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( *Met `  Y
) )
8074, 79syl 17 . . . . . . . . . 10  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  Y ) )
81 cfilfil 23065 . . . . . . . . . 10  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  Y )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  f  e.  ( Fil `  Y ) )
8280, 81sylan 488 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( Fil `  Y
) )
83 elfvdm 6220 . . . . . . . . . 10  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
8483ad2antrr 762 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  X  e.  dom  CMet )
85 trfg 21695 . . . . . . . . 9  |-  ( ( f  e.  ( Fil `  Y )  /\  Y  C_  X  /\  X  e. 
dom  CMet )  ->  (
( X filGen f )t  Y )  =  f )
8682, 76, 84, 85syl3anc 1326 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( X filGen f )t  Y )  =  f )
8786eqcomd 2628 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  =  ( ( X
filGen f )t  Y ) )
8878, 87oveq12d 6668 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =  ( ( Jt  Y )  fLim  (
( X filGen f )t  Y ) ) )
8975, 6syl 17 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  J  e.  (TopOn `  X )
)
90 filfbas 21652 . . . . . . . . . 10  |-  ( f  e.  ( Fil `  Y
)  ->  f  e.  ( fBas `  Y )
)
9182, 90syl 17 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( fBas `  Y
) )
92 filsspw 21655 . . . . . . . . . . 11  |-  ( f  e.  ( Fil `  Y
)  ->  f  C_  ~P Y )
9382, 92syl 17 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_ 
~P Y )
94 sspwb 4917 . . . . . . . . . . 11  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
9576, 94sylib 208 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ~P Y  C_  ~P X )
9693, 95sstrd 3613 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_ 
~P X )
97 fbasweak 21669 . . . . . . . . 9  |-  ( ( f  e.  ( fBas `  Y )  /\  f  C_ 
~P X  /\  X  e.  dom  CMet )  ->  f  e.  ( fBas `  X
) )
9891, 96, 84, 97syl3anc 1326 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( fBas `  X
) )
99 fgcl 21682 . . . . . . . 8  |-  ( f  e.  ( fBas `  X
)  ->  ( X filGen f )  e.  ( Fil `  X ) )
10098, 99syl 17 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  ( Fil `  X
) )
101 ssfg 21676 . . . . . . . . 9  |-  ( f  e.  ( fBas `  X
)  ->  f  C_  ( X filGen f ) )
10298, 101syl 17 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_  ( X filGen f ) )
103 filtop 21659 . . . . . . . . 9  |-  ( f  e.  ( Fil `  Y
)  ->  Y  e.  f )
10482, 103syl 17 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  e.  f )
105102, 104sseldd 3604 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  e.  ( X filGen f ) )
106 flimrest 21787 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen f )  e.  ( Fil `  X
)  /\  Y  e.  ( X filGen f ) )  ->  ( ( Jt  Y )  fLim  ( ( X filGen f )t  Y ) )  =  ( ( J  fLim  ( X filGen f ) )  i^i 
Y ) )
10789, 100, 105, 106syl3anc 1326 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( Jt  Y )  fLim  (
( X filGen f )t  Y ) )  =  ( ( J  fLim  ( X filGen f ) )  i^i  Y ) )
108 flimclsi 21782 . . . . . . . . 9  |-  ( Y  e.  ( X filGen f )  ->  ( J  fLim  ( X filGen f ) )  C_  ( ( cls `  J ) `  Y ) )
109105, 108syl 17 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  C_  (
( cls `  J
) `  Y )
)
110 cldcls 20846 . . . . . . . . 9  |-  ( Y  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  Y )  =  Y )
111110ad2antlr 763 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( cls `  J
) `  Y )  =  Y )
112109, 111sseqtrd 3641 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  C_  Y
)
113 df-ss 3588 . . . . . . 7  |-  ( ( J  fLim  ( X filGen f ) )  C_  Y 
<->  ( ( J  fLim  ( X filGen f ) )  i^i  Y )  =  ( J  fLim  ( X filGen f ) ) )
114112, 113sylib 208 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( J  fLim  ( X filGen f ) )  i^i  Y )  =  ( J  fLim  ( X filGen f ) ) )
11588, 107, 1143eqtrd 2660 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =  ( J 
fLim  ( X filGen f ) ) )
116 simpll 790 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  D  e.  ( CMet `  X
) )
11768, 2syl 17 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  D  e.  ( *Met `  X ) )
118 cfilresi 23093 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  (CauFil `  D )
)
119117, 118sylan 488 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  (CauFil `  D )
)
1205cmetcvg 23083 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( X filGen f )  e.  (CauFil `  D )
)  ->  ( J  fLim  ( X filGen f ) )  =/=  (/) )
121116, 119, 120syl2anc 693 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  =/=  (/) )
122115, 121eqnetrd 2861 . . . 4  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) )
123122ralrimiva 2966 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  A. f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) )
12434iscmet 23082 . . 3  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  ( ( D  |`  ( Y  X.  Y
) )  e.  ( Met `  Y )  /\  A. f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) ) )
12574, 123, 124sylanbrc 698 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )
12667, 125impbida 877 1  |-  ( D  e.  ( CMet `  X
)  ->  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  Y  e.  ( Clsd `  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E*wmo 2471    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436    X. cxp 5112   dom cdm 5114    |` cres 5116   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   *Metcxmt 19731   Metcme 19732   fBascfbas 19734   filGencfg 19735   MetOpencmopn 19736   Topctop 20698  TopOnctopon 20715   Clsdccld 20820   clsccl 20822   Hauscha 21112   Filcfil 21649    fLim cflim 21738  CauFilccfil 23050   CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-haus 21119  df-fil 21650  df-flim 21743  df-cfil 23053  df-cmet 23055
This theorem is referenced by:  recmet  23120  cmsss  23147  bnsscmcl  27724  rrnheibor  33636
  Copyright terms: Public domain W3C validator