MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpii Structured version   Visualization version   Unicode version

Theorem mpii 46
Description: A doubly nested modus ponens inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 31-Jul-2012.)
Hypotheses
Ref Expression
mpii.1  |-  ch
mpii.2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
mpii  |-  ( ph  ->  ( ps  ->  th )
)

Proof of Theorem mpii
StepHypRef Expression
1 mpii.1 . . 3  |-  ch
21a1i 11 . 2  |-  ( ps 
->  ch )
3 mpii.2 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
42, 3mpdi 45 1  |-  ( ph  ->  ( ps  ->  th )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  intmin  4497  dfiin2g  4553  ssorduni  6985  suceloni  7013  lublecllem  16988  irredmul  18709  opnneiid  20930  isufil2  21712  mdbr3  29156  mdbr4  29157  dmdbr5  29167  filnetlem4  32376  iunord  42422
  Copyright terms: Public domain W3C validator