| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfiin2g | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of
indexed intersection when |
| Ref | Expression |
|---|---|
| dfiin2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2917 |
. . . 4
| |
| 2 | df-ral 2917 |
. . . . . 6
| |
| 3 | eleq2 2690 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | biimprcd 240 |
. . . . . . . . . . . 12
|
| 5 | 4 | alrimiv 1855 |
. . . . . . . . . . 11
|
| 6 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 7 | eqeq1 2626 |
. . . . . . . . . . . . . 14
| |
| 8 | 7, 3 | imbi12d 334 |
. . . . . . . . . . . . 13
|
| 9 | 8 | spcgv 3293 |
. . . . . . . . . . . 12
|
| 10 | 6, 9 | mpii 46 |
. . . . . . . . . . 11
|
| 11 | 5, 10 | impbid2 216 |
. . . . . . . . . 10
|
| 12 | 11 | imim2i 16 |
. . . . . . . . 9
|
| 13 | 12 | pm5.74d 262 |
. . . . . . . 8
|
| 14 | 13 | alimi 1739 |
. . . . . . 7
|
| 15 | albi 1746 |
. . . . . . 7
| |
| 16 | 14, 15 | syl 17 |
. . . . . 6
|
| 17 | 2, 16 | sylbi 207 |
. . . . 5
|
| 18 | df-ral 2917 |
. . . . . . . 8
| |
| 19 | 18 | albii 1747 |
. . . . . . 7
|
| 20 | alcom 2037 |
. . . . . . 7
| |
| 21 | 19, 20 | bitr4i 267 |
. . . . . 6
|
| 22 | r19.23v 3023 |
. . . . . . . 8
| |
| 23 | vex 3203 |
. . . . . . . . . 10
| |
| 24 | eqeq1 2626 |
. . . . . . . . . . 11
| |
| 25 | 24 | rexbidv 3052 |
. . . . . . . . . 10
|
| 26 | 23, 25 | elab 3350 |
. . . . . . . . 9
|
| 27 | 26 | imbi1i 339 |
. . . . . . . 8
|
| 28 | 22, 27 | bitr4i 267 |
. . . . . . 7
|
| 29 | 28 | albii 1747 |
. . . . . 6
|
| 30 | 19.21v 1868 |
. . . . . . 7
| |
| 31 | 30 | albii 1747 |
. . . . . 6
|
| 32 | 21, 29, 31 | 3bitr3ri 291 |
. . . . 5
|
| 33 | 17, 32 | syl6bb 276 |
. . . 4
|
| 34 | 1, 33 | syl5bb 272 |
. . 3
|
| 35 | 34 | abbidv 2741 |
. 2
|
| 36 | df-iin 4523 |
. 2
| |
| 37 | df-int 4476 |
. 2
| |
| 38 | 35, 36, 37 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-int 4476 df-iin 4523 |
| This theorem is referenced by: dfiin2 4555 iinexg 4824 dfiin3g 5379 iinfi 8323 mreiincl 16256 iinopn 20707 clsval2 20854 alexsublem 21848 |
| Copyright terms: Public domain | W3C validator |