| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lublecllem | Structured version Visualization version Unicode version | ||
| Description: Lemma for lublecl 16989 and lubid 16990. (Contributed by NM, 8-Sep-2018.) |
| Ref | Expression |
|---|---|
| lublecl.b |
|
| lublecl.l |
|
| lublecl.u |
|
| lublecl.k |
|
| lublecl.x |
|
| Ref | Expression |
|---|---|
| lublecllem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4656 |
. . . 4
| |
| 2 | 1 | ralrab 3368 |
. . 3
|
| 3 | 1 | ralrab 3368 |
. . . . 5
|
| 4 | 3 | imbi1i 339 |
. . . 4
|
| 5 | 4 | ralbii 2980 |
. . 3
|
| 6 | 2, 5 | anbi12i 733 |
. 2
|
| 7 | lublecl.x |
. . . . . 6
| |
| 8 | lublecl.k |
. . . . . . . 8
| |
| 9 | lublecl.b |
. . . . . . . . 9
| |
| 10 | lublecl.l |
. . . . . . . . 9
| |
| 11 | 9, 10 | posref 16951 |
. . . . . . . 8
|
| 12 | 8, 7, 11 | syl2anc 693 |
. . . . . . 7
|
| 13 | breq1 4656 |
. . . . . . . . 9
| |
| 14 | breq1 4656 |
. . . . . . . . 9
| |
| 15 | 13, 14 | imbi12d 334 |
. . . . . . . 8
|
| 16 | 15 | rspcva 3307 |
. . . . . . 7
|
| 17 | 12, 16 | syl5com 31 |
. . . . . 6
|
| 18 | 7, 17 | mpand 711 |
. . . . 5
|
| 19 | 18 | adantr 481 |
. . . 4
|
| 20 | idd 24 |
. . . . . . 7
| |
| 21 | 20 | rgen 2922 |
. . . . . 6
|
| 22 | breq2 4657 |
. . . . . . . . . . 11
| |
| 23 | 22 | imbi2d 330 |
. . . . . . . . . 10
|
| 24 | 23 | ralbidv 2986 |
. . . . . . . . 9
|
| 25 | breq2 4657 |
. . . . . . . . 9
| |
| 26 | 24, 25 | imbi12d 334 |
. . . . . . . 8
|
| 27 | 26 | rspcv 3305 |
. . . . . . 7
|
| 28 | 7, 27 | syl 17 |
. . . . . 6
|
| 29 | 21, 28 | mpii 46 |
. . . . 5
|
| 30 | 29 | adantr 481 |
. . . 4
|
| 31 | 8 | adantr 481 |
. . . . . . 7
|
| 32 | simpr 477 |
. . . . . . 7
| |
| 33 | 7 | adantr 481 |
. . . . . . 7
|
| 34 | 9, 10 | posasymb 16952 |
. . . . . . 7
|
| 35 | 31, 32, 33, 34 | syl3anc 1326 |
. . . . . 6
|
| 36 | 35 | biimpd 219 |
. . . . 5
|
| 37 | 36 | ancomsd 470 |
. . . 4
|
| 38 | 19, 30, 37 | syl2and 500 |
. . 3
|
| 39 | breq2 4657 |
. . . . . . . 8
| |
| 40 | 39 | biimprd 238 |
. . . . . . 7
|
| 41 | 40 | ralrimivw 2967 |
. . . . . 6
|
| 42 | 41 | adantl 482 |
. . . . 5
|
| 43 | 7 | adantr 481 |
. . . . . . . 8
|
| 44 | breq1 4656 |
. . . . . . . . . . 11
| |
| 45 | 13, 44 | imbi12d 334 |
. . . . . . . . . 10
|
| 46 | 45 | rspcva 3307 |
. . . . . . . . 9
|
| 47 | pm5.5 351 |
. . . . . . . . . . 11
| |
| 48 | 12, 47 | syl 17 |
. . . . . . . . . 10
|
| 49 | breq1 4656 |
. . . . . . . . . . 11
| |
| 50 | 49 | bicomd 213 |
. . . . . . . . . 10
|
| 51 | 48, 50 | sylan9bb 736 |
. . . . . . . . 9
|
| 52 | 46, 51 | syl5ib 234 |
. . . . . . . 8
|
| 53 | 43, 52 | mpand 711 |
. . . . . . 7
|
| 54 | 53 | ralrimivw 2967 |
. . . . . 6
|
| 55 | 54 | adantlr 751 |
. . . . 5
|
| 56 | 42, 55 | jca 554 |
. . . 4
|
| 57 | 56 | ex 450 |
. . 3
|
| 58 | 38, 57 | impbid 202 |
. 2
|
| 59 | 6, 58 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-preset 16928 df-poset 16946 |
| This theorem is referenced by: lublecl 16989 lubid 16990 |
| Copyright terms: Public domain | W3C validator |