HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdbr3 Structured version   Visualization version   Unicode version

Theorem mdbr3 29156
Description: Binary relation expressing the modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdbr3  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  <->  A. x  e.  CH  (
( ( x  i^i 
B )  vH  A
)  i^i  B )  =  ( ( x  i^i  B )  vH  ( A  i^i  B ) ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem mdbr3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mdbr 29153 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  <->  A. y  e.  CH  (
y  C_  B  ->  ( ( y  vH  A
)  i^i  B )  =  ( y  vH  ( A  i^i  B ) ) ) ) )
2 chincl 28358 . . . . . . . 8  |-  ( ( x  e.  CH  /\  B  e.  CH )  ->  ( x  i^i  B
)  e.  CH )
3 inss2 3834 . . . . . . . . 9  |-  ( x  i^i  B )  C_  B
4 sseq1 3626 . . . . . . . . . . 11  |-  ( y  =  ( x  i^i 
B )  ->  (
y  C_  B  <->  ( x  i^i  B )  C_  B
) )
5 oveq1 6657 . . . . . . . . . . . . 13  |-  ( y  =  ( x  i^i 
B )  ->  (
y  vH  A )  =  ( ( x  i^i  B )  vH  A ) )
65ineq1d 3813 . . . . . . . . . . . 12  |-  ( y  =  ( x  i^i 
B )  ->  (
( y  vH  A
)  i^i  B )  =  ( ( ( x  i^i  B )  vH  A )  i^i 
B ) )
7 oveq1 6657 . . . . . . . . . . . 12  |-  ( y  =  ( x  i^i 
B )  ->  (
y  vH  ( A  i^i  B ) )  =  ( ( x  i^i 
B )  vH  ( A  i^i  B ) ) )
86, 7eqeq12d 2637 . . . . . . . . . . 11  |-  ( y  =  ( x  i^i 
B )  ->  (
( ( y  vH  A )  i^i  B
)  =  ( y  vH  ( A  i^i  B ) )  <->  ( (
( x  i^i  B
)  vH  A )  i^i  B )  =  ( ( x  i^i  B
)  vH  ( A  i^i  B ) ) ) )
94, 8imbi12d 334 . . . . . . . . . 10  |-  ( y  =  ( x  i^i 
B )  ->  (
( y  C_  B  ->  ( ( y  vH  A )  i^i  B
)  =  ( y  vH  ( A  i^i  B ) ) )  <->  ( (
x  i^i  B )  C_  B  ->  ( (
( x  i^i  B
)  vH  A )  i^i  B )  =  ( ( x  i^i  B
)  vH  ( A  i^i  B ) ) ) ) )
109rspcv 3305 . . . . . . . . 9  |-  ( ( x  i^i  B )  e.  CH  ->  ( A. y  e.  CH  (
y  C_  B  ->  ( ( y  vH  A
)  i^i  B )  =  ( y  vH  ( A  i^i  B ) ) )  ->  (
( x  i^i  B
)  C_  B  ->  ( ( ( x  i^i 
B )  vH  A
)  i^i  B )  =  ( ( x  i^i  B )  vH  ( A  i^i  B ) ) ) ) )
113, 10mpii 46 . . . . . . . 8  |-  ( ( x  i^i  B )  e.  CH  ->  ( A. y  e.  CH  (
y  C_  B  ->  ( ( y  vH  A
)  i^i  B )  =  ( y  vH  ( A  i^i  B ) ) )  ->  (
( ( x  i^i 
B )  vH  A
)  i^i  B )  =  ( ( x  i^i  B )  vH  ( A  i^i  B ) ) ) )
122, 11syl 17 . . . . . . 7  |-  ( ( x  e.  CH  /\  B  e.  CH )  ->  ( A. y  e. 
CH  ( y  C_  B  ->  ( ( y  vH  A )  i^i 
B )  =  ( y  vH  ( A  i^i  B ) ) )  ->  ( (
( x  i^i  B
)  vH  A )  i^i  B )  =  ( ( x  i^i  B
)  vH  ( A  i^i  B ) ) ) )
1312ex 450 . . . . . 6  |-  ( x  e.  CH  ->  ( B  e.  CH  ->  ( A. y  e.  CH  (
y  C_  B  ->  ( ( y  vH  A
)  i^i  B )  =  ( y  vH  ( A  i^i  B ) ) )  ->  (
( ( x  i^i 
B )  vH  A
)  i^i  B )  =  ( ( x  i^i  B )  vH  ( A  i^i  B ) ) ) ) )
1413com3l 89 . . . . 5  |-  ( B  e.  CH  ->  ( A. y  e.  CH  (
y  C_  B  ->  ( ( y  vH  A
)  i^i  B )  =  ( y  vH  ( A  i^i  B ) ) )  ->  (
x  e.  CH  ->  ( ( ( x  i^i 
B )  vH  A
)  i^i  B )  =  ( ( x  i^i  B )  vH  ( A  i^i  B ) ) ) ) )
1514ralrimdv 2968 . . . 4  |-  ( B  e.  CH  ->  ( A. y  e.  CH  (
y  C_  B  ->  ( ( y  vH  A
)  i^i  B )  =  ( y  vH  ( A  i^i  B ) ) )  ->  A. x  e.  CH  ( ( ( x  i^i  B )  vH  A )  i^i 
B )  =  ( ( x  i^i  B
)  vH  ( A  i^i  B ) ) ) )
16 dfss 3589 . . . . . . . . . . 11  |-  ( x 
C_  B  <->  x  =  ( x  i^i  B ) )
1716biimpi 206 . . . . . . . . . 10  |-  ( x 
C_  B  ->  x  =  ( x  i^i 
B ) )
1817oveq1d 6665 . . . . . . . . 9  |-  ( x 
C_  B  ->  (
x  vH  A )  =  ( ( x  i^i  B )  vH  A ) )
1918ineq1d 3813 . . . . . . . 8  |-  ( x 
C_  B  ->  (
( x  vH  A
)  i^i  B )  =  ( ( ( x  i^i  B )  vH  A )  i^i 
B ) )
2017oveq1d 6665 . . . . . . . 8  |-  ( x 
C_  B  ->  (
x  vH  ( A  i^i  B ) )  =  ( ( x  i^i 
B )  vH  ( A  i^i  B ) ) )
2119, 20eqeq12d 2637 . . . . . . 7  |-  ( x 
C_  B  ->  (
( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) )  <->  ( (
( x  i^i  B
)  vH  A )  i^i  B )  =  ( ( x  i^i  B
)  vH  ( A  i^i  B ) ) ) )
2221biimprcd 240 . . . . . 6  |-  ( ( ( ( x  i^i 
B )  vH  A
)  i^i  B )  =  ( ( x  i^i  B )  vH  ( A  i^i  B ) )  ->  ( x  C_  B  ->  ( (
x  vH  A )  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) )
2322ralimi 2952 . . . . 5  |-  ( A. x  e.  CH  ( ( ( x  i^i  B
)  vH  A )  i^i  B )  =  ( ( x  i^i  B
)  vH  ( A  i^i  B ) )  ->  A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) )
24 sseq1 3626 . . . . . . 7  |-  ( x  =  y  ->  (
x  C_  B  <->  y  C_  B ) )
25 oveq1 6657 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  vH  A )  =  ( y  vH  A ) )
2625ineq1d 3813 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  vH  A
)  i^i  B )  =  ( ( y  vH  A )  i^i 
B ) )
27 oveq1 6657 . . . . . . . 8  |-  ( x  =  y  ->  (
x  vH  ( A  i^i  B ) )  =  ( y  vH  ( A  i^i  B ) ) )
2826, 27eqeq12d 2637 . . . . . . 7  |-  ( x  =  y  ->  (
( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) )  <->  ( (
y  vH  A )  i^i  B )  =  ( y  vH  ( A  i^i  B ) ) ) )
2924, 28imbi12d 334 . . . . . 6  |-  ( x  =  y  ->  (
( x  C_  B  ->  ( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) )  <->  ( y  C_  B  ->  ( (
y  vH  A )  i^i  B )  =  ( y  vH  ( A  i^i  B ) ) ) ) )
3029cbvralv 3171 . . . . 5  |-  ( A. x  e.  CH  ( x 
C_  B  ->  (
( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) )  <->  A. y  e.  CH  ( y  C_  B  ->  ( ( y  vH  A )  i^i 
B )  =  ( y  vH  ( A  i^i  B ) ) ) )
3123, 30sylib 208 . . . 4  |-  ( A. x  e.  CH  ( ( ( x  i^i  B
)  vH  A )  i^i  B )  =  ( ( x  i^i  B
)  vH  ( A  i^i  B ) )  ->  A. y  e.  CH  (
y  C_  B  ->  ( ( y  vH  A
)  i^i  B )  =  ( y  vH  ( A  i^i  B ) ) ) )
3215, 31impbid1 215 . . 3  |-  ( B  e.  CH  ->  ( A. y  e.  CH  (
y  C_  B  ->  ( ( y  vH  A
)  i^i  B )  =  ( y  vH  ( A  i^i  B ) ) )  <->  A. x  e.  CH  ( ( ( x  i^i  B )  vH  A )  i^i 
B )  =  ( ( x  i^i  B
)  vH  ( A  i^i  B ) ) ) )
3332adantl 482 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A. y  e. 
CH  ( y  C_  B  ->  ( ( y  vH  A )  i^i 
B )  =  ( y  vH  ( A  i^i  B ) ) )  <->  A. x  e.  CH  ( ( ( x  i^i  B )  vH  A )  i^i  B
)  =  ( ( x  i^i  B )  vH  ( A  i^i  B ) ) ) )
341, 33bitrd 268 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  <->  A. x  e.  CH  (
( ( x  i^i 
B )  vH  A
)  i^i  B )  =  ( ( x  i^i  B )  vH  ( A  i^i  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   class class class wbr 4653  (class class class)co 6650   CHcch 27786    vH chj 27790    MH cmd 27823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009  ax-hilex 27856  ax-hfvadd 27857  ax-hv0cl 27860  ax-hfvmul 27862
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-map 7859  df-nn 11021  df-hlim 27829  df-sh 28064  df-ch 28078  df-md 29139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator