MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredmul Structured version   Visualization version   Unicode version

Theorem irredmul 18709
Description: If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i  |-  I  =  (Irred `  R )
irredmul.b  |-  B  =  ( Base `  R
)
irredmul.u  |-  U  =  (Unit `  R )
irredmul.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
irredmul  |-  ( ( X  e.  B  /\  Y  e.  B  /\  ( X  .x.  Y )  e.  I )  -> 
( X  e.  U  \/  Y  e.  U
) )

Proof of Theorem irredmul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredmul.b . . . . 5  |-  B  =  ( Base `  R
)
2 irredmul.u . . . . 5  |-  U  =  (Unit `  R )
3 irredn0.i . . . . 5  |-  I  =  (Irred `  R )
4 irredmul.t . . . . 5  |-  .x.  =  ( .r `  R )
51, 2, 3, 4isirred2 18701 . . . 4  |-  ( ( X  .x.  Y )  e.  I  <->  ( ( X  .x.  Y )  e.  B  /\  -.  ( X  .x.  Y )  e.  U  /\  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  ( X  .x.  Y )  ->  (
x  e.  U  \/  y  e.  U )
) ) )
65simp3bi 1078 . . 3  |-  ( ( X  .x.  Y )  e.  I  ->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  ( X  .x.  Y )  ->  (
x  e.  U  \/  y  e.  U )
) )
7 eqid 2622 . . . 4  |-  ( X 
.x.  Y )  =  ( X  .x.  Y
)
8 oveq1 6657 . . . . . . 7  |-  ( x  =  X  ->  (
x  .x.  y )  =  ( X  .x.  y ) )
98eqeq1d 2624 . . . . . 6  |-  ( x  =  X  ->  (
( x  .x.  y
)  =  ( X 
.x.  Y )  <->  ( X  .x.  y )  =  ( X  .x.  Y ) ) )
10 eleq1 2689 . . . . . . 7  |-  ( x  =  X  ->  (
x  e.  U  <->  X  e.  U ) )
1110orbi1d 739 . . . . . 6  |-  ( x  =  X  ->  (
( x  e.  U  \/  y  e.  U
)  <->  ( X  e.  U  \/  y  e.  U ) ) )
129, 11imbi12d 334 . . . . 5  |-  ( x  =  X  ->  (
( ( x  .x.  y )  =  ( X  .x.  Y )  ->  ( x  e.  U  \/  y  e.  U ) )  <->  ( ( X  .x.  y )  =  ( X  .x.  Y
)  ->  ( X  e.  U  \/  y  e.  U ) ) ) )
13 oveq2 6658 . . . . . . 7  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
1413eqeq1d 2624 . . . . . 6  |-  ( y  =  Y  ->  (
( X  .x.  y
)  =  ( X 
.x.  Y )  <->  ( X  .x.  Y )  =  ( X  .x.  Y ) ) )
15 eleq1 2689 . . . . . . 7  |-  ( y  =  Y  ->  (
y  e.  U  <->  Y  e.  U ) )
1615orbi2d 738 . . . . . 6  |-  ( y  =  Y  ->  (
( X  e.  U  \/  y  e.  U
)  <->  ( X  e.  U  \/  Y  e.  U ) ) )
1714, 16imbi12d 334 . . . . 5  |-  ( y  =  Y  ->  (
( ( X  .x.  y )  =  ( X  .x.  Y )  ->  ( X  e.  U  \/  y  e.  U ) )  <->  ( ( X  .x.  Y )  =  ( X  .x.  Y
)  ->  ( X  e.  U  \/  Y  e.  U ) ) ) )
1812, 17rspc2v 3322 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( ( x 
.x.  y )  =  ( X  .x.  Y
)  ->  ( x  e.  U  \/  y  e.  U ) )  -> 
( ( X  .x.  Y )  =  ( X  .x.  Y )  ->  ( X  e.  U  \/  Y  e.  U ) ) ) )
197, 18mpii 46 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( ( x 
.x.  y )  =  ( X  .x.  Y
)  ->  ( x  e.  U  \/  y  e.  U ) )  -> 
( X  e.  U  \/  Y  e.  U
) ) )
206, 19syl5 34 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( ( X  .x.  Y )  e.  I  ->  ( X  e.  U  \/  Y  e.  U
) ) )
21203impia 1261 1  |-  ( ( X  e.  B  /\  Y  e.  B  /\  ( X  .x.  Y )  e.  I )  -> 
( X  e.  U  \/  Y  e.  U
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942  Unitcui 18639  Irredcir 18640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-irred 18643
This theorem is referenced by:  prmirredlem  19841
  Copyright terms: Public domain W3C validator