MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexd Structured version   Visualization version   Unicode version

Theorem mreexd 16302
Description: In a Moore system, the closure operator is said to have the exchange property if, for all elements  y and  z of the base set and subsets  S of the base set such that  z is in the closure of  ( S  u.  { y } ) but not in the closure of  S,  y is in the closure of  ( S  u.  { z } ) (Definition 3.1.9 in [FaureFrolicher] p. 57 to 58.) This theorem allows us to construct substitution instances of this definition. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexd.1  |-  ( ph  ->  X  e.  V )
mreexd.2  |-  ( ph  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
mreexd.3  |-  ( ph  ->  S  C_  X )
mreexd.4  |-  ( ph  ->  Y  e.  X )
mreexd.5  |-  ( ph  ->  Z  e.  ( N `
 ( S  u.  { Y } ) ) )
mreexd.6  |-  ( ph  ->  -.  Z  e.  ( N `  S ) )
Assertion
Ref Expression
mreexd  |-  ( ph  ->  Y  e.  ( N `
 ( S  u.  { Z } ) ) )
Distinct variable groups:    X, s,
y    S, s, z, y    ph, s, y, z    Y, s, y, z    Z, s, y, z    N, s, y, z
Allowed substitution hints:    V( y, z, s)    X( z)

Proof of Theorem mreexd
StepHypRef Expression
1 mreexd.2 . 2  |-  ( ph  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
2 mreexd.1 . . . 4  |-  ( ph  ->  X  e.  V )
3 mreexd.3 . . . 4  |-  ( ph  ->  S  C_  X )
42, 3sselpwd 4807 . . 3  |-  ( ph  ->  S  e.  ~P X
)
5 mreexd.4 . . . . 5  |-  ( ph  ->  Y  e.  X )
65adantr 481 . . . 4  |-  ( (
ph  /\  s  =  S )  ->  Y  e.  X )
7 mreexd.5 . . . . . . . 8  |-  ( ph  ->  Z  e.  ( N `
 ( S  u.  { Y } ) ) )
87ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  Z  e.  ( N `  ( S  u.  { Y } ) ) )
9 simplr 792 . . . . . . . . 9  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  s  =  S )
10 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  y  =  Y )
1110sneqd 4189 . . . . . . . . 9  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  { y }  =  { Y } )
129, 11uneq12d 3768 . . . . . . . 8  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  (
s  u.  { y } )  =  ( S  u.  { Y } ) )
1312fveq2d 6195 . . . . . . 7  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  ( N `  ( s  u.  { y } ) )  =  ( N `
 ( S  u.  { Y } ) ) )
148, 13eleqtrrd 2704 . . . . . 6  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  Z  e.  ( N `  (
s  u.  { y } ) ) )
15 mreexd.6 . . . . . . . 8  |-  ( ph  ->  -.  Z  e.  ( N `  S ) )
1615ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  -.  Z  e.  ( N `  S ) )
179fveq2d 6195 . . . . . . 7  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  ( N `  s )  =  ( N `  S ) )
1816, 17neleqtrrd 2723 . . . . . 6  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  -.  Z  e.  ( N `  s ) )
1914, 18eldifd 3585 . . . . 5  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  Z  e.  ( ( N `  ( s  u.  {
y } ) ) 
\  ( N `  s ) ) )
20 simplr 792 . . . . . 6  |-  ( ( ( ( ph  /\  s  =  S )  /\  y  =  Y
)  /\  z  =  Z )  ->  y  =  Y )
21 simpllr 799 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  =  S )  /\  y  =  Y
)  /\  z  =  Z )  ->  s  =  S )
22 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  =  S )  /\  y  =  Y
)  /\  z  =  Z )  ->  z  =  Z )
2322sneqd 4189 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  =  S )  /\  y  =  Y
)  /\  z  =  Z )  ->  { z }  =  { Z } )
2421, 23uneq12d 3768 . . . . . . 7  |-  ( ( ( ( ph  /\  s  =  S )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
s  u.  { z } )  =  ( S  u.  { Z } ) )
2524fveq2d 6195 . . . . . 6  |-  ( ( ( ( ph  /\  s  =  S )  /\  y  =  Y
)  /\  z  =  Z )  ->  ( N `  ( s  u.  { z } ) )  =  ( N `
 ( S  u.  { Z } ) ) )
2620, 25eleq12d 2695 . . . . 5  |-  ( ( ( ( ph  /\  s  =  S )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
y  e.  ( N `
 ( s  u. 
{ z } ) )  <->  Y  e.  ( N `  ( S  u.  { Z } ) ) ) )
2719, 26rspcdv 3312 . . . 4  |-  ( ( ( ph  /\  s  =  S )  /\  y  =  Y )  ->  ( A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) )  ->  Y  e.  ( N `  ( S  u.  { Z } ) ) ) )
286, 27rspcimdv 3310 . . 3  |-  ( (
ph  /\  s  =  S )  ->  ( A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) )  ->  Y  e.  ( N `  ( S  u.  { Z } ) ) ) )
294, 28rspcimdv 3310 . 2  |-  ( ph  ->  ( A. s  e. 
~P  X A. y  e.  X  A. z  e.  ( ( N `  ( s  u.  {
y } ) ) 
\  ( N `  s ) ) y  e.  ( N `  ( s  u.  {
z } ) )  ->  Y  e.  ( N `  ( S  u.  { Z }
) ) ) )
301, 29mpd 15 1  |-  ( ph  ->  Y  e.  ( N `
 ( S  u.  { Z } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    u. cun 3572    C_ wss 3574   ~Pcpw 4158   {csn 4177   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  mreexmrid  16303
  Copyright terms: Public domain W3C validator