| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreexd | Structured version Visualization version Unicode version | ||
| Description: In a Moore system, the
closure operator is said to have the exchange
property if, for all elements |
| Ref | Expression |
|---|---|
| mreexd.1 |
|
| mreexd.2 |
|
| mreexd.3 |
|
| mreexd.4 |
|
| mreexd.5 |
|
| mreexd.6 |
|
| Ref | Expression |
|---|---|
| mreexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexd.2 |
. 2
| |
| 2 | mreexd.1 |
. . . 4
| |
| 3 | mreexd.3 |
. . . 4
| |
| 4 | 2, 3 | sselpwd 4807 |
. . 3
|
| 5 | mreexd.4 |
. . . . 5
| |
| 6 | 5 | adantr 481 |
. . . 4
|
| 7 | mreexd.5 |
. . . . . . . 8
| |
| 8 | 7 | ad2antrr 762 |
. . . . . . 7
|
| 9 | simplr 792 |
. . . . . . . . 9
| |
| 10 | simpr 477 |
. . . . . . . . . 10
| |
| 11 | 10 | sneqd 4189 |
. . . . . . . . 9
|
| 12 | 9, 11 | uneq12d 3768 |
. . . . . . . 8
|
| 13 | 12 | fveq2d 6195 |
. . . . . . 7
|
| 14 | 8, 13 | eleqtrrd 2704 |
. . . . . 6
|
| 15 | mreexd.6 |
. . . . . . . 8
| |
| 16 | 15 | ad2antrr 762 |
. . . . . . 7
|
| 17 | 9 | fveq2d 6195 |
. . . . . . 7
|
| 18 | 16, 17 | neleqtrrd 2723 |
. . . . . 6
|
| 19 | 14, 18 | eldifd 3585 |
. . . . 5
|
| 20 | simplr 792 |
. . . . . 6
| |
| 21 | simpllr 799 |
. . . . . . . 8
| |
| 22 | simpr 477 |
. . . . . . . . 9
| |
| 23 | 22 | sneqd 4189 |
. . . . . . . 8
|
| 24 | 21, 23 | uneq12d 3768 |
. . . . . . 7
|
| 25 | 24 | fveq2d 6195 |
. . . . . 6
|
| 26 | 20, 25 | eleq12d 2695 |
. . . . 5
|
| 27 | 19, 26 | rspcdv 3312 |
. . . 4
|
| 28 | 6, 27 | rspcimdv 3310 |
. . 3
|
| 29 | 4, 28 | rspcimdv 3310 |
. 2
|
| 30 | 1, 29 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: mreexmrid 16303 |
| Copyright terms: Public domain | W3C validator |