MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrissmrid Structured version   Visualization version   Unicode version

Theorem mrissmrid 16301
Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrissmrid.1  |-  ( ph  ->  A  e.  (Moore `  X ) )
mrissmrid.2  |-  N  =  (mrCls `  A )
mrissmrid.3  |-  I  =  (mrInd `  A )
mrissmrid.4  |-  ( ph  ->  S  e.  I )
mrissmrid.5  |-  ( ph  ->  T  C_  S )
Assertion
Ref Expression
mrissmrid  |-  ( ph  ->  T  e.  I )

Proof of Theorem mrissmrid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mrissmrid.2 . 2  |-  N  =  (mrCls `  A )
2 mrissmrid.3 . 2  |-  I  =  (mrInd `  A )
3 mrissmrid.1 . 2  |-  ( ph  ->  A  e.  (Moore `  X ) )
4 mrissmrid.5 . . 3  |-  ( ph  ->  T  C_  S )
5 mrissmrid.4 . . . 4  |-  ( ph  ->  S  e.  I )
62, 3, 5mrissd 16296 . . 3  |-  ( ph  ->  S  C_  X )
74, 6sstrd 3613 . 2  |-  ( ph  ->  T  C_  X )
81, 2, 3, 6ismri2d 16293 . . . 4  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  {
x } ) ) ) )
95, 8mpbid 222 . . 3  |-  ( ph  ->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x } ) ) )
104sseld 3602 . . . . 5  |-  ( ph  ->  ( x  e.  T  ->  x  e.  S ) )
114ssdifd 3746 . . . . . . 7  |-  ( ph  ->  ( T  \  {
x } )  C_  ( S  \  { x } ) )
126ssdifssd 3748 . . . . . . 7  |-  ( ph  ->  ( S  \  {
x } )  C_  X )
133, 1, 11, 12mrcssd 16284 . . . . . 6  |-  ( ph  ->  ( N `  ( T  \  { x }
) )  C_  ( N `  ( S  \  { x } ) ) )
1413ssneld 3605 . . . . 5  |-  ( ph  ->  ( -.  x  e.  ( N `  ( S  \  { x }
) )  ->  -.  x  e.  ( N `  ( T  \  {
x } ) ) ) )
1510, 14imim12d 81 . . . 4  |-  ( ph  ->  ( ( x  e.  S  ->  -.  x  e.  ( N `  ( S  \  { x }
) ) )  -> 
( x  e.  T  ->  -.  x  e.  ( N `  ( T 
\  { x }
) ) ) ) )
1615ralimdv2 2961 . . 3  |-  ( ph  ->  ( A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x }
) )  ->  A. x  e.  T  -.  x  e.  ( N `  ( T  \  { x }
) ) ) )
179, 16mpd 15 . 2  |-  ( ph  ->  A. x  e.  T  -.  x  e.  ( N `  ( T  \  { x } ) ) )
181, 2, 3, 7, 17ismri2dd 16294 1  |-  ( ph  ->  T  e.  I )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    C_ wss 3574   {csn 4177   ` cfv 5888  Moorecmre 16242  mrClscmrc 16243  mrIndcmri 16244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-mrc 16247  df-mri 16248
This theorem is referenced by:  mreexexlem2d  16305  acsfiindd  17177
  Copyright terms: Public domain W3C validator