MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lpligALT Structured version   Visualization version   Unicode version

Theorem n0lpligALT 27336
Description: Alternate version of n0lplig 27335 using the predicate  e/ instead of  -.  e. and whose proof bypasses nsnlplig 27333. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
n0lpligALT  |-  ( G  e.  Plig  ->  (/)  e/  G
)

Proof of Theorem n0lpligALT
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  U. G  =  U. G
21l2p 27331 . . 3  |-  ( ( G  e.  Plig  /\  (/)  e.  G
)  ->  E. a  e.  U. G E. b  e.  U. G ( a  =/=  b  /\  a  e.  (/)  /\  b  e.  (/) ) )
3 noel 3919 . . . . . . 7  |-  -.  a  e.  (/)
43pm2.21i 116 . . . . . 6  |-  ( a  e.  (/)  ->  (/)  e/  G
)
543ad2ant2 1083 . . . . 5  |-  ( ( a  =/=  b  /\  a  e.  (/)  /\  b  e.  (/) )  ->  (/)  e/  G
)
65a1i 11 . . . 4  |-  ( ( a  e.  U. G  /\  b  e.  U. G
)  ->  ( (
a  =/=  b  /\  a  e.  (/)  /\  b  e.  (/) )  ->  (/)  e/  G
) )
76rexlimivv 3036 . . 3  |-  ( E. a  e.  U. G E. b  e.  U. G
( a  =/=  b  /\  a  e.  (/)  /\  b  e.  (/) )  ->  (/)  e/  G
)
82, 7syl 17 . 2  |-  ( ( G  e.  Plig  /\  (/)  e.  G
)  ->  (/)  e/  G
)
9 simpr 477 . 2  |-  ( ( G  e.  Plig  /\  (/)  e/  G
)  ->  (/)  e/  G
)
108, 9pm2.61danel 2911 1  |-  ( G  e.  Plig  ->  (/)  e/  G
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794    e/ wnel 2897   E.wrex 2913   (/)c0 3915   U.cuni 4436   Pligcplig 27326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-v 3202  df-dif 3577  df-nul 3916  df-uni 4437  df-plig 27327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator