| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neiptopuni | Structured version Visualization version Unicode version | ||
| Description: Lemma for neiptopreu 20937. (Contributed by Thierry Arnoux, 6-Jan-2018.) |
| Ref | Expression |
|---|---|
| neiptop.o |
|
| neiptop.0 |
|
| neiptop.1 |
|
| neiptop.2 |
|
| neiptop.3 |
|
| neiptop.4 |
|
| neiptop.5 |
|
| Ref | Expression |
|---|---|
| neiptopuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4168 |
. . . . . . . 8
| |
| 2 | 1 | ad2antlr 763 |
. . . . . . 7
|
| 3 | simpr 477 |
. . . . . . 7
| |
| 4 | 2, 3 | sseldd 3604 |
. . . . . 6
|
| 5 | neiptop.o |
. . . . . . . . . 10
| |
| 6 | 5 | unieqi 4445 |
. . . . . . . . 9
|
| 7 | 6 | eleq2i 2693 |
. . . . . . . 8
|
| 8 | elunirab 4448 |
. . . . . . . 8
| |
| 9 | 7, 8 | bitri 264 |
. . . . . . 7
|
| 10 | simpl 473 |
. . . . . . . 8
| |
| 11 | 10 | reximi 3011 |
. . . . . . 7
|
| 12 | 9, 11 | sylbi 207 |
. . . . . 6
|
| 13 | 4, 12 | r19.29a 3078 |
. . . . 5
|
| 14 | 13 | a1i 11 |
. . . 4
|
| 15 | 14 | ssrdv 3609 |
. . 3
|
| 16 | ssid 3624 |
. . . . 5
| |
| 17 | 16 | a1i 11 |
. . . 4
|
| 18 | neiptop.5 |
. . . . 5
| |
| 19 | 18 | ralrimiva 2966 |
. . . 4
|
| 20 | 5 | neipeltop 20933 |
. . . 4
|
| 21 | 17, 19, 20 | sylanbrc 698 |
. . 3
|
| 22 | unissel 4468 |
. . 3
| |
| 23 | 15, 21, 22 | syl2anc 693 |
. 2
|
| 24 | 23 | eqcomd 2628 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-uni 4437 |
| This theorem is referenced by: neiptoptop 20935 neiptopnei 20936 neiptopreu 20937 |
| Copyright terms: Public domain | W3C validator |