MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptopreu Structured version   Visualization version   Unicode version

Theorem neiptopreu 20937
Description: If, to each element  P of a set  X, we associate a set  ( N `  P ) fulfilling the properties Vi, Vii, Viii and property Viv of [BourbakiTop1] p. I.2. , corresponding to ssnei 20914, innei 20929, elnei 20915 and neissex 20931, then there is a unique topology  j such that for any point  p,  ( N `  p ) is the set of neighborhoods of  p. Proposition 2 of [BourbakiTop1] p. I.3. This can be used to build a topology from a set of neighborhoods. Note that the additional condition that  X is a neighborhood of all points was added. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o  |-  J  =  { a  e.  ~P X  |  A. p  e.  a  a  e.  ( N `  p ) }
neiptop.0  |-  ( ph  ->  N : X --> ~P ~P X )
neiptop.1  |-  ( ( ( ( ph  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p ) )  -> 
b  e.  ( N `
 p ) )
neiptop.2  |-  ( (
ph  /\  p  e.  X )  ->  ( fi `  ( N `  p ) )  C_  ( N `  p ) )
neiptop.3  |-  ( ( ( ph  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  p  e.  a )
neiptop.4  |-  ( ( ( ph  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  E. b  e.  ( N `  p
) A. q  e.  b  a  e.  ( N `  q ) )
neiptop.5  |-  ( (
ph  /\  p  e.  X )  ->  X  e.  ( N `  p
) )
Assertion
Ref Expression
neiptopreu  |-  ( ph  ->  E! j  e.  (TopOn `  X ) N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) ) )
Distinct variable groups:    p, a, N    X, a, b, p    J, a, p    X, p    ph, p    N, b    X, b    ph, a, b, q, p    N, p, q    X, q    ph, q    j, a, b, J, p    j,
q, N    j, X    ph, j
Allowed substitution hint:    J( q)

Proof of Theorem neiptopreu
StepHypRef Expression
1 neiptop.o . . . . 5  |-  J  =  { a  e.  ~P X  |  A. p  e.  a  a  e.  ( N `  p ) }
2 neiptop.0 . . . . 5  |-  ( ph  ->  N : X --> ~P ~P X )
3 neiptop.1 . . . . 5  |-  ( ( ( ( ph  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p ) )  -> 
b  e.  ( N `
 p ) )
4 neiptop.2 . . . . 5  |-  ( (
ph  /\  p  e.  X )  ->  ( fi `  ( N `  p ) )  C_  ( N `  p ) )
5 neiptop.3 . . . . 5  |-  ( ( ( ph  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  p  e.  a )
6 neiptop.4 . . . . 5  |-  ( ( ( ph  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  E. b  e.  ( N `  p
) A. q  e.  b  a  e.  ( N `  q ) )
7 neiptop.5 . . . . 5  |-  ( (
ph  /\  p  e.  X )  ->  X  e.  ( N `  p
) )
81, 2, 3, 4, 5, 6, 7neiptoptop 20935 . . . 4  |-  ( ph  ->  J  e.  Top )
9 eqid 2622 . . . . 5  |-  U. J  =  U. J
109toptopon 20722 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
118, 10sylib 208 . . 3  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
121, 2, 3, 4, 5, 6, 7neiptopuni 20934 . . . 4  |-  ( ph  ->  X  =  U. J
)
1312fveq2d 6195 . . 3  |-  ( ph  ->  (TopOn `  X )  =  (TopOn `  U. J ) )
1411, 13eleqtrrd 2704 . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
151, 2, 3, 4, 5, 6, 7neiptopnei 20936 . 2  |-  ( ph  ->  N  =  ( p  e.  X  |->  ( ( nei `  J ) `
 { p }
) ) )
16 nfv 1843 . . . . . . . . . 10  |-  F/ p
( ph  /\  j  e.  (TopOn `  X )
)
17 nfmpt1 4747 . . . . . . . . . . 11  |-  F/_ p
( p  e.  X  |->  ( ( nei `  j
) `  { p } ) )
1817nfeq2 2780 . . . . . . . . . 10  |-  F/ p  N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) )
1916, 18nfan 1828 . . . . . . . . 9  |-  F/ p
( ( ph  /\  j  e.  (TopOn `  X
) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) ) )
20 nfv 1843 . . . . . . . . 9  |-  F/ p  b  C_  X
2119, 20nfan 1828 . . . . . . . 8  |-  F/ p
( ( ( ph  /\  j  e.  (TopOn `  X ) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) ) )  /\  b  C_  X )
22 simpllr 799 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  j  e.  (TopOn `  X ) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) ) )  /\  b  C_  X )  /\  p  e.  b )  ->  N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) ) )
23 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) ) )  /\  b  C_  X )  ->  b  C_  X )
2423sselda 3603 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  j  e.  (TopOn `  X ) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) ) )  /\  b  C_  X )  /\  p  e.  b )  ->  p  e.  X )
25 id 22 . . . . . . . . . . . 12  |-  ( N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) )  ->  N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) ) )
26 fvexd 6203 . . . . . . . . . . . 12  |-  ( ( N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) )  /\  p  e.  X )  ->  (
( nei `  j
) `  { p } )  e.  _V )
2725, 26fvmpt2d 6293 . . . . . . . . . . 11  |-  ( ( N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) )  /\  p  e.  X )  ->  ( N `  p )  =  ( ( nei `  j ) `  {
p } ) )
2822, 24, 27syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  j  e.  (TopOn `  X ) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) ) )  /\  b  C_  X )  /\  p  e.  b )  ->  ( N `  p
)  =  ( ( nei `  j ) `
 { p }
) )
2928eqcomd 2628 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  j  e.  (TopOn `  X ) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) ) )  /\  b  C_  X )  /\  p  e.  b )  ->  ( ( nei `  j
) `  { p } )  =  ( N `  p ) )
3029eleq2d 2687 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  j  e.  (TopOn `  X ) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) ) )  /\  b  C_  X )  /\  p  e.  b )  ->  ( b  e.  ( ( nei `  j
) `  { p } )  <->  b  e.  ( N `  p ) ) )
3121, 30ralbida 2982 . . . . . . 7  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) ) )  /\  b  C_  X )  ->  ( A. p  e.  b 
b  e.  ( ( nei `  j ) `
 { p }
)  <->  A. p  e.  b  b  e.  ( N `
 p ) ) )
3231pm5.32da 673 . . . . . 6  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) ) )  ->  ( ( b 
C_  X  /\  A. p  e.  b  b  e.  ( ( nei `  j
) `  { p } ) )  <->  ( b  C_  X  /\  A. p  e.  b  b  e.  ( N `  p ) ) ) )
33 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) ) )  /\  b  e.  j )  ->  j  e.  (TopOn `  X )
)
34 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) ) )  /\  b  e.  j )  ->  b  e.  j )
35 toponss 20731 . . . . . . . . 9  |-  ( ( j  e.  (TopOn `  X )  /\  b  e.  j )  ->  b  C_  X )
3633, 34, 35syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) ) )  /\  b  e.  j )  ->  b  C_  X )
37 topontop 20718 . . . . . . . . . . 11  |-  ( j  e.  (TopOn `  X
)  ->  j  e.  Top )
3837ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) ) )  ->  j  e.  Top )
39 opnnei 20924 . . . . . . . . . 10  |-  ( j  e.  Top  ->  (
b  e.  j  <->  A. p  e.  b  b  e.  ( ( nei `  j
) `  { p } ) ) )
4038, 39syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) ) )  ->  ( b  e.  j  <->  A. p  e.  b  b  e.  ( ( nei `  j ) `
 { p }
) ) )
4140biimpa 501 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) ) )  /\  b  e.  j )  ->  A. p  e.  b  b  e.  ( ( nei `  j
) `  { p } ) )
4236, 41jca 554 . . . . . . 7  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) ) )  /\  b  e.  j )  ->  (
b  C_  X  /\  A. p  e.  b  b  e.  ( ( nei `  j ) `  {
p } ) ) )
4340biimpar 502 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) ) )  /\  A. p  e.  b  b  e.  ( ( nei `  j
) `  { p } ) )  -> 
b  e.  j )
4443adantrl 752 . . . . . . 7  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) ) )  /\  ( b 
C_  X  /\  A. p  e.  b  b  e.  ( ( nei `  j
) `  { p } ) ) )  ->  b  e.  j )
4542, 44impbida 877 . . . . . 6  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) ) )  ->  ( b  e.  j  <->  ( b  C_  X  /\  A. p  e.  b  b  e.  ( ( nei `  j
) `  { p } ) ) ) )
461neipeltop 20933 . . . . . . 7  |-  ( b  e.  J  <->  ( b  C_  X  /\  A. p  e.  b  b  e.  ( N `  p ) ) )
4746a1i 11 . . . . . 6  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) ) )  ->  ( b  e.  J  <->  ( b  C_  X  /\  A. p  e.  b  b  e.  ( N `  p ) ) ) )
4832, 45, 473bitr4d 300 . . . . 5  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) ) )  ->  ( b  e.  j  <->  b  e.  J
) )
4948eqrdv 2620 . . . 4  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) ) )  ->  j  =  J )
5049ex 450 . . 3  |-  ( (
ph  /\  j  e.  (TopOn `  X ) )  ->  ( N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) )  -> 
j  =  J ) )
5150ralrimiva 2966 . 2  |-  ( ph  ->  A. j  e.  (TopOn `  X ) ( N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) )  ->  j  =  J ) )
52 simpl 473 . . . . . . 7  |-  ( ( j  =  J  /\  p  e.  X )  ->  j  =  J )
5352fveq2d 6195 . . . . . 6  |-  ( ( j  =  J  /\  p  e.  X )  ->  ( nei `  j
)  =  ( nei `  J ) )
5453fveq1d 6193 . . . . 5  |-  ( ( j  =  J  /\  p  e.  X )  ->  ( ( nei `  j
) `  { p } )  =  ( ( nei `  J
) `  { p } ) )
5554mpteq2dva 4744 . . . 4  |-  ( j  =  J  ->  (
p  e.  X  |->  ( ( nei `  j
) `  { p } ) )  =  ( p  e.  X  |->  ( ( nei `  J
) `  { p } ) ) )
5655eqeq2d 2632 . . 3  |-  ( j  =  J  ->  ( N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) )  <->  N  =  ( p  e.  X  |->  ( ( nei `  J
) `  { p } ) ) ) )
5756eqreu 3398 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  N  =  ( p  e.  X  |->  ( ( nei `  J ) `  {
p } ) )  /\  A. j  e.  (TopOn `  X )
( N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) )  -> 
j  =  J ) )  ->  E! j  e.  (TopOn `  X ) N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) ) )
5814, 15, 51, 57syl3anc 1326 1  |-  ( ph  ->  E! j  e.  (TopOn `  X ) N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436    |-> cmpt 4729   -->wf 5884   ` cfv 5888   ficfi 8316   Topctop 20698  TopOnctopon 20715   neicnei 20901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-top 20699  df-topon 20716  df-ntr 20824  df-nei 20902
This theorem is referenced by:  ustuqtop  22050
  Copyright terms: Public domain W3C validator