| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neiptopreu | Structured version Visualization version Unicode version | ||
| Description: If, to each element |
| Ref | Expression |
|---|---|
| neiptop.o |
|
| neiptop.0 |
|
| neiptop.1 |
|
| neiptop.2 |
|
| neiptop.3 |
|
| neiptop.4 |
|
| neiptop.5 |
|
| Ref | Expression |
|---|---|
| neiptopreu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neiptop.o |
. . . . 5
| |
| 2 | neiptop.0 |
. . . . 5
| |
| 3 | neiptop.1 |
. . . . 5
| |
| 4 | neiptop.2 |
. . . . 5
| |
| 5 | neiptop.3 |
. . . . 5
| |
| 6 | neiptop.4 |
. . . . 5
| |
| 7 | neiptop.5 |
. . . . 5
| |
| 8 | 1, 2, 3, 4, 5, 6, 7 | neiptoptop 20935 |
. . . 4
|
| 9 | eqid 2622 |
. . . . 5
| |
| 10 | 9 | toptopon 20722 |
. . . 4
|
| 11 | 8, 10 | sylib 208 |
. . 3
|
| 12 | 1, 2, 3, 4, 5, 6, 7 | neiptopuni 20934 |
. . . 4
|
| 13 | 12 | fveq2d 6195 |
. . 3
|
| 14 | 11, 13 | eleqtrrd 2704 |
. 2
|
| 15 | 1, 2, 3, 4, 5, 6, 7 | neiptopnei 20936 |
. 2
|
| 16 | nfv 1843 |
. . . . . . . . . 10
| |
| 17 | nfmpt1 4747 |
. . . . . . . . . . 11
| |
| 18 | 17 | nfeq2 2780 |
. . . . . . . . . 10
|
| 19 | 16, 18 | nfan 1828 |
. . . . . . . . 9
|
| 20 | nfv 1843 |
. . . . . . . . 9
| |
| 21 | 19, 20 | nfan 1828 |
. . . . . . . 8
|
| 22 | simpllr 799 |
. . . . . . . . . . 11
| |
| 23 | simpr 477 |
. . . . . . . . . . . 12
| |
| 24 | 23 | sselda 3603 |
. . . . . . . . . . 11
|
| 25 | id 22 |
. . . . . . . . . . . 12
| |
| 26 | fvexd 6203 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | fvmpt2d 6293 |
. . . . . . . . . . 11
|
| 28 | 22, 24, 27 | syl2anc 693 |
. . . . . . . . . 10
|
| 29 | 28 | eqcomd 2628 |
. . . . . . . . 9
|
| 30 | 29 | eleq2d 2687 |
. . . . . . . 8
|
| 31 | 21, 30 | ralbida 2982 |
. . . . . . 7
|
| 32 | 31 | pm5.32da 673 |
. . . . . 6
|
| 33 | simpllr 799 |
. . . . . . . . 9
| |
| 34 | simpr 477 |
. . . . . . . . 9
| |
| 35 | toponss 20731 |
. . . . . . . . 9
| |
| 36 | 33, 34, 35 | syl2anc 693 |
. . . . . . . 8
|
| 37 | topontop 20718 |
. . . . . . . . . . 11
| |
| 38 | 37 | ad2antlr 763 |
. . . . . . . . . 10
|
| 39 | opnnei 20924 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | syl 17 |
. . . . . . . . 9
|
| 41 | 40 | biimpa 501 |
. . . . . . . 8
|
| 42 | 36, 41 | jca 554 |
. . . . . . 7
|
| 43 | 40 | biimpar 502 |
. . . . . . . 8
|
| 44 | 43 | adantrl 752 |
. . . . . . 7
|
| 45 | 42, 44 | impbida 877 |
. . . . . 6
|
| 46 | 1 | neipeltop 20933 |
. . . . . . 7
|
| 47 | 46 | a1i 11 |
. . . . . 6
|
| 48 | 32, 45, 47 | 3bitr4d 300 |
. . . . 5
|
| 49 | 48 | eqrdv 2620 |
. . . 4
|
| 50 | 49 | ex 450 |
. . 3
|
| 51 | 50 | ralrimiva 2966 |
. 2
|
| 52 | simpl 473 |
. . . . . . 7
| |
| 53 | 52 | fveq2d 6195 |
. . . . . 6
|
| 54 | 53 | fveq1d 6193 |
. . . . 5
|
| 55 | 54 | mpteq2dva 4744 |
. . . 4
|
| 56 | 55 | eqeq2d 2632 |
. . 3
|
| 57 | 56 | eqreu 3398 |
. 2
|
| 58 | 14, 15, 51, 57 | syl3anc 1326 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-fin 7959 df-fi 8317 df-top 20699 df-topon 20716 df-ntr 20824 df-nei 20902 |
| This theorem is referenced by: ustuqtop 22050 |
| Copyright terms: Public domain | W3C validator |