MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifsn Structured version   Visualization version   Unicode version

Theorem ssdifsn 4318
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.)
Assertion
Ref Expression
ssdifsn  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  -.  C  e.  A ) )

Proof of Theorem ssdifsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfss3 3592 . . . 4  |-  ( A 
C_  ( B  \  { C } )  <->  A. x  e.  A  x  e.  ( B  \  { C } ) )
2 eldifsn 4317 . . . . 5  |-  ( x  e.  ( B  \  { C } )  <->  ( x  e.  B  /\  x  =/=  C ) )
32ralbii 2980 . . . 4  |-  ( A. x  e.  A  x  e.  ( B  \  { C } )  <->  A. x  e.  A  ( x  e.  B  /\  x  =/=  C ) )
41, 3bitri 264 . . 3  |-  ( A 
C_  ( B  \  { C } )  <->  A. x  e.  A  ( x  e.  B  /\  x  =/=  C ) )
5 r19.26 3064 . . 3  |-  ( A. x  e.  A  (
x  e.  B  /\  x  =/=  C )  <->  ( A. x  e.  A  x  e.  B  /\  A. x  e.  A  x  =/=  C ) )
64, 5bitri 264 . 2  |-  ( A 
C_  ( B  \  { C } )  <->  ( A. x  e.  A  x  e.  B  /\  A. x  e.  A  x  =/=  C ) )
7 dfss3 3592 . . . 4  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )
87bicomi 214 . . 3  |-  ( A. x  e.  A  x  e.  B  <->  A  C_  B )
9 neirr 2803 . . . . 5  |-  -.  C  =/=  C
10 neeq1 2856 . . . . . 6  |-  ( x  =  C  ->  (
x  =/=  C  <->  C  =/=  C ) )
1110rspccv 3306 . . . . 5  |-  ( A. x  e.  A  x  =/=  C  ->  ( C  e.  A  ->  C  =/= 
C ) )
129, 11mtoi 190 . . . 4  |-  ( A. x  e.  A  x  =/=  C  ->  -.  C  e.  A )
13 nelelne 2892 . . . . 5  |-  ( -.  C  e.  A  -> 
( x  e.  A  ->  x  =/=  C ) )
1413ralrimiv 2965 . . . 4  |-  ( -.  C  e.  A  ->  A. x  e.  A  x  =/=  C )
1512, 14impbii 199 . . 3  |-  ( A. x  e.  A  x  =/=  C  <->  -.  C  e.  A )
168, 15anbi12i 733 . 2  |-  ( ( A. x  e.  A  x  e.  B  /\  A. x  e.  A  x  =/=  C )  <->  ( A  C_  B  /\  -.  C  e.  A ) )
176, 16bitri 264 1  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  -.  C  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    C_ wss 3574   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-sn 4178
This theorem is referenced by:  logdivsqrle  30728  elsetrecslem  42444
  Copyright terms: Public domain W3C validator