MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem9 Structured version   Visualization version   Unicode version

Theorem frgrncvvdeqlem9 27171
Description: Lemma 9 for frgrncvvdeq 27173. This corresponds to statement 3 in [Huneke] p. 1: "By symmetry the map is onto". (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1  |-  V  =  (Vtx `  G )
frgrncvvdeq.e  |-  E  =  (Edg `  G )
frgrncvvdeq.nx  |-  D  =  ( G NeighbVtx  X )
frgrncvvdeq.ny  |-  N  =  ( G NeighbVtx  Y )
frgrncvvdeq.x  |-  ( ph  ->  X  e.  V )
frgrncvvdeq.y  |-  ( ph  ->  Y  e.  V )
frgrncvvdeq.ne  |-  ( ph  ->  X  =/=  Y )
frgrncvvdeq.xy  |-  ( ph  ->  Y  e/  D )
frgrncvvdeq.f  |-  ( ph  ->  G  e. FriendGraph  )
frgrncvvdeq.a  |-  A  =  ( x  e.  D  |->  ( iota_ y  e.  N  { x ,  y }  e.  E ) )
Assertion
Ref Expression
frgrncvvdeqlem9  |-  ( ph  ->  A : D -onto-> N
)
Distinct variable groups:    y, D    y, G    y, V    y, Y    ph, y, x    y, E    y, N    x, D    x, N    ph, x    x, E
Allowed substitution hints:    A( x, y)    G( x)    V( x)    X( x, y)    Y( x)

Proof of Theorem frgrncvvdeqlem9
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.v1 . . 3  |-  V  =  (Vtx `  G )
2 frgrncvvdeq.e . . 3  |-  E  =  (Edg `  G )
3 frgrncvvdeq.nx . . 3  |-  D  =  ( G NeighbVtx  X )
4 frgrncvvdeq.ny . . 3  |-  N  =  ( G NeighbVtx  Y )
5 frgrncvvdeq.x . . 3  |-  ( ph  ->  X  e.  V )
6 frgrncvvdeq.y . . 3  |-  ( ph  ->  Y  e.  V )
7 frgrncvvdeq.ne . . 3  |-  ( ph  ->  X  =/=  Y )
8 frgrncvvdeq.xy . . 3  |-  ( ph  ->  Y  e/  D )
9 frgrncvvdeq.f . . 3  |-  ( ph  ->  G  e. FriendGraph  )
10 frgrncvvdeq.a . . 3  |-  A  =  ( x  e.  D  |->  ( iota_ y  e.  N  { x ,  y }  e.  E ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem4 27166 . 2  |-  ( ph  ->  A : D --> N )
129adantr 481 . . . . . . 7  |-  ( (
ph  /\  n  e.  N )  ->  G  e. FriendGraph  )
134eleq2i 2693 . . . . . . . . . 10  |-  ( n  e.  N  <->  n  e.  ( G NeighbVtx  Y ) )
14 frgrusgr 27124 . . . . . . . . . . 11  |-  ( G  e. FriendGraph  ->  G  e. USGraph  )
151nbgrisvtx 26255 . . . . . . . . . . . 12  |-  ( ( G  e. USGraph  /\  n  e.  ( G NeighbVtx  Y )
)  ->  n  e.  V )
1615ex 450 . . . . . . . . . . 11  |-  ( G  e. USGraph  ->  ( n  e.  ( G NeighbVtx  Y )  ->  n  e.  V ) )
179, 14, 163syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( n  e.  ( G NeighbVtx  Y )  ->  n  e.  V ) )
1813, 17syl5bi 232 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  N  ->  n  e.  V ) )
1918imp 445 . . . . . . . 8  |-  ( (
ph  /\  n  e.  N )  ->  n  e.  V )
205adantr 481 . . . . . . . 8  |-  ( (
ph  /\  n  e.  N )  ->  X  e.  V )
211, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem1 27163 . . . . . . . . . 10  |-  ( ph  ->  X  e/  N )
22 df-nel 2898 . . . . . . . . . . 11  |-  ( X  e/  N  <->  -.  X  e.  N )
23 nelelne 2892 . . . . . . . . . . 11  |-  ( -.  X  e.  N  -> 
( n  e.  N  ->  n  =/=  X ) )
2422, 23sylbi 207 . . . . . . . . . 10  |-  ( X  e/  N  ->  (
n  e.  N  ->  n  =/=  X ) )
2521, 24syl 17 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  N  ->  n  =/=  X ) )
2625imp 445 . . . . . . . 8  |-  ( (
ph  /\  n  e.  N )  ->  n  =/=  X )
2719, 20, 263jca 1242 . . . . . . 7  |-  ( (
ph  /\  n  e.  N )  ->  (
n  e.  V  /\  X  e.  V  /\  n  =/=  X ) )
2812, 27jca 554 . . . . . 6  |-  ( (
ph  /\  n  e.  N )  ->  ( G  e. FriendGraph  /\  ( n  e.  V  /\  X  e.  V  /\  n  =/=  X ) ) )
291, 2frcond2 27131 . . . . . . 7  |-  ( G  e. FriendGraph  ->  ( ( n  e.  V  /\  X  e.  V  /\  n  =/=  X )  ->  E! m  e.  V  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E ) ) )
3029imp 445 . . . . . 6  |-  ( ( G  e. FriendGraph  /\  ( n  e.  V  /\  X  e.  V  /\  n  =/=  X ) )  ->  E! m  e.  V  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E ) )
31 reurex 3160 . . . . . . 7  |-  ( E! m  e.  V  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E )  ->  E. m  e.  V  ( {
n ,  m }  e.  E  /\  { m ,  X }  e.  E
) )
32 df-rex 2918 . . . . . . 7  |-  ( E. m  e.  V  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E )  <->  E. m
( m  e.  V  /\  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E )
) )
3331, 32sylib 208 . . . . . 6  |-  ( E! m  e.  V  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E )  ->  E. m
( m  e.  V  /\  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E )
) )
3428, 30, 333syl 18 . . . . 5  |-  ( (
ph  /\  n  e.  N )  ->  E. m
( m  e.  V  /\  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E )
) )
352nbusgreledg 26249 . . . . . . . . . . . . . 14  |-  ( G  e. USGraph  ->  ( m  e.  ( G NeighbVtx  X )  <->  { m ,  X }  e.  E ) )
3635bicomd 213 . . . . . . . . . . . . 13  |-  ( G  e. USGraph  ->  ( { m ,  X }  e.  E  <->  m  e.  ( G NeighbVtx  X ) ) )
379, 14, 363syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  ( { m ,  X }  e.  E  <->  m  e.  ( G NeighbVtx  X ) ) )
3837biimpa 501 . . . . . . . . . . 11  |-  ( (
ph  /\  { m ,  X }  e.  E
)  ->  m  e.  ( G NeighbVtx  X ) )
393eleq2i 2693 . . . . . . . . . . 11  |-  ( m  e.  D  <->  m  e.  ( G NeighbVtx  X ) )
4038, 39sylibr 224 . . . . . . . . . 10  |-  ( (
ph  /\  { m ,  X }  e.  E
)  ->  m  e.  D )
4140ad2ant2rl 785 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N )  /\  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E ) )  ->  m  e.  D )
422nbusgreledg 26249 . . . . . . . . . . . . . . . 16  |-  ( G  e. USGraph  ->  ( n  e.  ( G NeighbVtx  m )  <->  { n ,  m }  e.  E ) )
4342biimpar 502 . . . . . . . . . . . . . . 15  |-  ( ( G  e. USGraph  /\  { n ,  m }  e.  E
)  ->  n  e.  ( G NeighbVtx  m ) )
4443a1d 25 . . . . . . . . . . . . . 14  |-  ( ( G  e. USGraph  /\  { n ,  m }  e.  E
)  ->  ( {
m ,  X }  e.  E  ->  n  e.  ( G NeighbVtx  m )
) )
4544expimpd 629 . . . . . . . . . . . . 13  |-  ( G  e. USGraph  ->  ( ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E
)  ->  n  e.  ( G NeighbVtx  m ) ) )
469, 14, 453syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E )  ->  n  e.  ( G NeighbVtx  m ) ) )
4746adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  N )  ->  (
( { n ,  m }  e.  E  /\  { m ,  X }  e.  E )  ->  n  e.  ( G NeighbVtx  m ) ) )
4847imp 445 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N )  /\  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E ) )  ->  n  e.  ( G NeighbVtx  m ) )
49 elin 3796 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ( G NeighbVtx  m )  i^i  N
)  <->  ( n  e.  ( G NeighbVtx  m )  /\  n  e.  N
) )
50 simpl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  { m ,  X }  e.  E
)  ->  ph )
5150, 40jca 554 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  { m ,  X }  e.  E
)  ->  ( ph  /\  m  e.  D ) )
52 preq1 4268 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  m  ->  { x ,  y }  =  { m ,  y } )
5352eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  m  ->  ( { x ,  y }  e.  E  <->  { m ,  y }  e.  E ) )
5453riotabidv 6613 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  m  ->  ( iota_ y  e.  N  {
x ,  y }  e.  E )  =  ( iota_ y  e.  N  { m ,  y }  e.  E ) )
5554cbvmptv 4750 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  D  |->  ( iota_ y  e.  N  { x ,  y }  e.  E ) )  =  ( m  e.  D  |->  ( iota_ y  e.  N  { m ,  y }  e.  E ) )
5610, 55eqtri 2644 . . . . . . . . . . . . . . . . . . . 20  |-  A  =  ( m  e.  D  |->  ( iota_ y  e.  N  { m ,  y }  e.  E ) )
571, 2, 3, 4, 5, 6, 7, 8, 9, 56frgrncvvdeqlem5 27167 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  D )  ->  { ( A `  m ) }  =  ( ( G NeighbVtx  m )  i^i  N
) )
58 eleq2 2690 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( G NeighbVtx  m )  i^i  N )  =  {
( A `  m
) }  ->  (
n  e.  ( ( G NeighbVtx  m )  i^i  N
)  <->  n  e.  { ( A `  m ) } ) )
5958eqcoms 2630 . . . . . . . . . . . . . . . . . . . 20  |-  ( { ( A `  m
) }  =  ( ( G NeighbVtx  m )  i^i  N )  ->  (
n  e.  ( ( G NeighbVtx  m )  i^i  N
)  <->  n  e.  { ( A `  m ) } ) )
60 elsni 4194 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  { ( A `
 m ) }  ->  n  =  ( A `  m ) )
6159, 60syl6bi 243 . . . . . . . . . . . . . . . . . . 19  |-  ( { ( A `  m
) }  =  ( ( G NeighbVtx  m )  i^i  N )  ->  (
n  e.  ( ( G NeighbVtx  m )  i^i  N
)  ->  n  =  ( A `  m ) ) )
6251, 57, 613syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  { m ,  X }  e.  E
)  ->  ( n  e.  ( ( G NeighbVtx  m )  i^i  N )  ->  n  =  ( A `  m ) ) )
6362expcom 451 . . . . . . . . . . . . . . . . 17  |-  ( { m ,  X }  e.  E  ->  ( ph  ->  ( n  e.  ( ( G NeighbVtx  m )  i^i  N )  ->  n  =  ( A `  m ) ) ) )
6463com3r 87 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ( G NeighbVtx  m )  i^i  N
)  ->  ( {
m ,  X }  e.  E  ->  ( ph  ->  n  =  ( A `
 m ) ) ) )
6549, 64sylbir 225 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( G NeighbVtx  m )  /\  n  e.  N )  ->  ( { m ,  X }  e.  E  ->  (
ph  ->  n  =  ( A `  m ) ) ) )
6665ex 450 . . . . . . . . . . . . . 14  |-  ( n  e.  ( G NeighbVtx  m )  ->  ( n  e.  N  ->  ( {
m ,  X }  e.  E  ->  ( ph  ->  n  =  ( A `
 m ) ) ) ) )
6766com14 96 . . . . . . . . . . . . 13  |-  ( ph  ->  ( n  e.  N  ->  ( { m ,  X }  e.  E  ->  ( n  e.  ( G NeighbVtx  m )  ->  n  =  ( A `  m ) ) ) ) )
6867imp 445 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  N )  ->  ( { m ,  X }  e.  E  ->  ( n  e.  ( G NeighbVtx  m )  ->  n  =  ( A `  m ) ) ) )
6968adantld 483 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  N )  ->  (
( { n ,  m }  e.  E  /\  { m ,  X }  e.  E )  ->  ( n  e.  ( G NeighbVtx  m )  ->  n  =  ( A `  m ) ) ) )
7069imp 445 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N )  /\  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E ) )  -> 
( n  e.  ( G NeighbVtx  m )  ->  n  =  ( A `  m ) ) )
7148, 70mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N )  /\  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E ) )  ->  n  =  ( A `  m ) )
7241, 71jca 554 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N )  /\  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E ) )  -> 
( m  e.  D  /\  n  =  ( A `  m )
) )
7372ex 450 . . . . . . 7  |-  ( (
ph  /\  n  e.  N )  ->  (
( { n ,  m }  e.  E  /\  { m ,  X }  e.  E )  ->  ( m  e.  D  /\  n  =  ( A `  m )
) ) )
7473adantld 483 . . . . . 6  |-  ( (
ph  /\  n  e.  N )  ->  (
( m  e.  V  /\  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E )
)  ->  ( m  e.  D  /\  n  =  ( A `  m ) ) ) )
7574eximdv 1846 . . . . 5  |-  ( (
ph  /\  n  e.  N )  ->  ( E. m ( m  e.  V  /\  ( { n ,  m }  e.  E  /\  { m ,  X }  e.  E
) )  ->  E. m
( m  e.  D  /\  n  =  ( A `  m )
) ) )
7634, 75mpd 15 . . . 4  |-  ( (
ph  /\  n  e.  N )  ->  E. m
( m  e.  D  /\  n  =  ( A `  m )
) )
77 df-rex 2918 . . . 4  |-  ( E. m  e.  D  n  =  ( A `  m )  <->  E. m
( m  e.  D  /\  n  =  ( A `  m )
) )
7876, 77sylibr 224 . . 3  |-  ( (
ph  /\  n  e.  N )  ->  E. m  e.  D  n  =  ( A `  m ) )
7978ralrimiva 2966 . 2  |-  ( ph  ->  A. n  e.  N  E. m  e.  D  n  =  ( A `  m ) )
80 dffo3 6374 . 2  |-  ( A : D -onto-> N  <->  ( A : D --> N  /\  A. n  e.  N  E. m  e.  D  n  =  ( A `  m ) ) )
8111, 79, 80sylanbrc 698 1  |-  ( ph  ->  A : D -onto-> N
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913   E!wreu 2914    i^i cin 3573   {csn 4177   {cpr 4179    |-> cmpt 4729   -->wf 5884   -onto->wfo 5886   ` cfv 5888   iota_crio 6610  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   NeighbVtx cnbgr 26224   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228  df-frgr 27121
This theorem is referenced by:  frgrncvvdeqlem10  27172
  Copyright terms: Public domain W3C validator