MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelrdva Structured version   Visualization version   Unicode version

Theorem nelrdva 3417
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.)
Hypothesis
Ref Expression
nelrdva.1  |-  ( (
ph  /\  x  e.  A )  ->  x  =/=  B )
Assertion
Ref Expression
nelrdva  |-  ( ph  ->  -.  B  e.  A
)
Distinct variable groups:    x, A    x, B    ph, x

Proof of Theorem nelrdva
StepHypRef Expression
1 eqidd 2623 . 2  |-  ( (
ph  /\  B  e.  A )  ->  B  =  B )
2 eleq1 2689 . . . . . . 7  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
32anbi2d 740 . . . . . 6  |-  ( x  =  B  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  B  e.  A ) ) )
4 neeq1 2856 . . . . . 6  |-  ( x  =  B  ->  (
x  =/=  B  <->  B  =/=  B ) )
53, 4imbi12d 334 . . . . 5  |-  ( x  =  B  ->  (
( ( ph  /\  x  e.  A )  ->  x  =/=  B )  <-> 
( ( ph  /\  B  e.  A )  ->  B  =/=  B ) ) )
6 nelrdva.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  =/=  B )
75, 6vtoclg 3266 . . . 4  |-  ( B  e.  A  ->  (
( ph  /\  B  e.  A )  ->  B  =/=  B ) )
87anabsi7 860 . . 3  |-  ( (
ph  /\  B  e.  A )  ->  B  =/=  B )
98neneqd 2799 . 2  |-  ( (
ph  /\  B  e.  A )  ->  -.  B  =  B )
101, 9pm2.65da 600 1  |-  ( ph  ->  -.  B  e.  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ne 2795  df-v 3202
This theorem is referenced by:  ustfilxp  22016  metustfbas  22362  fourierdlem72  40395
  Copyright terms: Public domain W3C validator