| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2reu5 | Structured version Visualization version Unicode version | ||
| Description: Double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification, analogous to 2eu5 2557 and reu3 3396. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2reu5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29r 3073 |
. . . . . . . 8
| |
| 2 | r19.29r 3073 |
. . . . . . . . 9
| |
| 3 | 2 | reximi 3011 |
. . . . . . . 8
|
| 4 | pm3.35 611 |
. . . . . . . . . 10
| |
| 5 | 4 | reximi 3011 |
. . . . . . . . 9
|
| 6 | 5 | reximi 3011 |
. . . . . . . 8
|
| 7 | eleq1 2689 |
. . . . . . . . . . . . 13
| |
| 8 | eleq1 2689 |
. . . . . . . . . . . . 13
| |
| 9 | 7, 8 | bi2anan9 917 |
. . . . . . . . . . . 12
|
| 10 | 9 | biimpac 503 |
. . . . . . . . . . 11
|
| 11 | 10 | ancomd 467 |
. . . . . . . . . 10
|
| 12 | 11 | ex 450 |
. . . . . . . . 9
|
| 13 | 12 | rexlimivv 3036 |
. . . . . . . 8
|
| 14 | 1, 3, 6, 13 | 4syl 19 |
. . . . . . 7
|
| 15 | 14 | ex 450 |
. . . . . 6
|
| 16 | 15 | pm4.71rd 667 |
. . . . 5
|
| 17 | anass 681 |
. . . . 5
| |
| 18 | 16, 17 | syl6bb 276 |
. . . 4
|
| 19 | 18 | 2exbidv 1852 |
. . 3
|
| 20 | 19 | pm5.32i 669 |
. 2
|
| 21 | 2reu5lem3 3415 |
. 2
| |
| 22 | df-rex 2918 |
. . . 4
| |
| 23 | r19.42v 3092 |
. . . . . 6
| |
| 24 | df-rex 2918 |
. . . . . 6
| |
| 25 | 23, 24 | bitr3i 266 |
. . . . 5
|
| 26 | 25 | exbii 1774 |
. . . 4
|
| 27 | 22, 26 | bitri 264 |
. . 3
|
| 28 | 27 | anbi2i 730 |
. 2
|
| 29 | 20, 21, 28 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 df-cleq 2615 df-clel 2618 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |