| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustfilxp | Structured version Visualization version Unicode version | ||
| Description: A uniform structure on a nonempty base is a filter. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
| Ref | Expression |
|---|---|
| ustfilxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6221 |
. . . . . . 7
| |
| 2 | isust 22007 |
. . . . . . 7
| |
| 3 | 1, 2 | syl 17 |
. . . . . 6
|
| 4 | 3 | ibi 256 |
. . . . 5
|
| 5 | 4 | adantl 482 |
. . . 4
|
| 6 | 5 | simp1d 1073 |
. . 3
|
| 7 | 5 | simp2d 1074 |
. . . . 5
|
| 8 | ne0i 3921 |
. . . . 5
| |
| 9 | 7, 8 | syl 17 |
. . . 4
|
| 10 | 5 | simp3d 1075 |
. . . . . . . . . 10
|
| 11 | 10 | r19.21bi 2932 |
. . . . . . . . 9
|
| 12 | 11 | simp3d 1075 |
. . . . . . . 8
|
| 13 | 12 | simp1d 1073 |
. . . . . . 7
|
| 14 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 15 | opelresi 5408 |
. . . . . . . . . . . . 13
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 17 | 16 | biimpri 218 |
. . . . . . . . . . 11
|
| 18 | 17 | rgen 2922 |
. . . . . . . . . 10
|
| 19 | r19.2z 4060 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | mpan2 707 |
. . . . . . . . 9
|
| 21 | 20 | ad2antrr 762 |
. . . . . . . 8
|
| 22 | ne0i 3921 |
. . . . . . . . 9
| |
| 23 | 22 | rexlimivw 3029 |
. . . . . . . 8
|
| 24 | 21, 23 | syl 17 |
. . . . . . 7
|
| 25 | ssn0 3976 |
. . . . . . 7
| |
| 26 | 13, 24, 25 | syl2anc 693 |
. . . . . 6
|
| 27 | 26 | nelrdva 3417 |
. . . . 5
|
| 28 | df-nel 2898 |
. . . . 5
| |
| 29 | 27, 28 | sylibr 224 |
. . . 4
|
| 30 | 11 | simp2d 1074 |
. . . . . . . . 9
|
| 31 | 30 | r19.21bi 2932 |
. . . . . . . 8
|
| 32 | 14 | inex2 4800 |
. . . . . . . . . 10
|
| 33 | 32 | pwid 4174 |
. . . . . . . . 9
|
| 34 | 33 | a1i 11 |
. . . . . . . 8
|
| 35 | 31, 34 | elind 3798 |
. . . . . . 7
|
| 36 | ne0i 3921 |
. . . . . . 7
| |
| 37 | 35, 36 | syl 17 |
. . . . . 6
|
| 38 | 37 | ralrimiva 2966 |
. . . . 5
|
| 39 | 38 | ralrimiva 2966 |
. . . 4
|
| 40 | 9, 29, 39 | 3jca 1242 |
. . 3
|
| 41 | xpexg 6960 |
. . . . . 6
| |
| 42 | 1, 1, 41 | syl2anc 693 |
. . . . 5
|
| 43 | isfbas 21633 |
. . . . 5
| |
| 44 | 42, 43 | syl 17 |
. . . 4
|
| 45 | 44 | adantl 482 |
. . 3
|
| 46 | 6, 40, 45 | mpbir2and 957 |
. 2
|
| 47 | n0 3931 |
. . . . 5
| |
| 48 | elin 3796 |
. . . . . . 7
| |
| 49 | selpw 4165 |
. . . . . . . 8
| |
| 50 | 49 | anbi2i 730 |
. . . . . . 7
|
| 51 | 48, 50 | bitri 264 |
. . . . . 6
|
| 52 | 51 | exbii 1774 |
. . . . 5
|
| 53 | 47, 52 | bitri 264 |
. . . 4
|
| 54 | 11 | simp1d 1073 |
. . . . . . . 8
|
| 55 | 54 | r19.21bi 2932 |
. . . . . . 7
|
| 56 | 55 | an32s 846 |
. . . . . 6
|
| 57 | 56 | expimpd 629 |
. . . . 5
|
| 58 | 57 | exlimdv 1861 |
. . . 4
|
| 59 | 53, 58 | syl5bi 232 |
. . 3
|
| 60 | 59 | ralrimiva 2966 |
. 2
|
| 61 | isfil 21651 |
. 2
| |
| 62 | 46, 60, 61 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-fbas 19743 df-fil 21650 df-ust 22004 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |