MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustfilxp Structured version   Visualization version   Unicode version

Theorem ustfilxp 22016
Description: A uniform structure on a nonempty base is a filter. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.)
Assertion
Ref Expression
ustfilxp  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  U  e.  ( Fil `  ( X  X.  X ) ) )

Proof of Theorem ustfilxp
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6221 . . . . . . 7  |-  ( U  e.  (UnifOn `  X
)  ->  X  e.  _V )
2 isust 22007 . . . . . . 7  |-  ( X  e.  _V  ->  ( U  e.  (UnifOn `  X
)  <->  ( U  C_  ~P ( X  X.  X
)  /\  ( X  X.  X )  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) ) )
31, 2syl 17 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  ( U  e.  (UnifOn `  X )  <->  ( U  C_  ~P ( X  X.  X )  /\  ( X  X.  X
)  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) ) )
43ibi 256 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  ( U  C_ 
~P ( X  X.  X )  /\  ( X  X.  X )  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) )
54adantl 482 . . . 4  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  ( U  C_ 
~P ( X  X.  X )  /\  ( X  X.  X )  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) )
65simp1d 1073 . . 3  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  U  C_  ~P ( X  X.  X
) )
75simp2d 1074 . . . . 5  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  ( X  X.  X )  e.  U
)
8 ne0i 3921 . . . . 5  |-  ( ( X  X.  X )  e.  U  ->  U  =/=  (/) )
97, 8syl 17 . . . 4  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  U  =/=  (/) )
105simp3d 1075 . . . . . . . . . 10  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) )
1110r19.21bi 2932 . . . . . . . . 9  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  v  e.  U )  ->  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) )
1211simp3d 1075 . . . . . . . 8  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  v  e.  U )  ->  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) )
1312simp1d 1073 . . . . . . 7  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  v  e.  U )  ->  (  _I  |`  X )  C_  v )
14 vex 3203 . . . . . . . . . . . . 13  |-  w  e. 
_V
15 opelresi 5408 . . . . . . . . . . . . 13  |-  ( w  e.  _V  ->  ( <. w ,  w >.  e.  (  _I  |`  X )  <-> 
w  e.  X ) )
1614, 15ax-mp 5 . . . . . . . . . . . 12  |-  ( <.
w ,  w >.  e.  (  _I  |`  X )  <-> 
w  e.  X )
1716biimpri 218 . . . . . . . . . . 11  |-  ( w  e.  X  ->  <. w ,  w >.  e.  (  _I  |`  X ) )
1817rgen 2922 . . . . . . . . . 10  |-  A. w  e.  X  <. w ,  w >.  e.  (  _I  |`  X )
19 r19.2z 4060 . . . . . . . . . 10  |-  ( ( X  =/=  (/)  /\  A. w  e.  X  <. w ,  w >.  e.  (  _I  |`  X )
)  ->  E. w  e.  X  <. w ,  w >.  e.  (  _I  |`  X ) )
2018, 19mpan2 707 . . . . . . . . 9  |-  ( X  =/=  (/)  ->  E. w  e.  X  <. w ,  w >.  e.  (  _I  |`  X ) )
2120ad2antrr 762 . . . . . . . 8  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  v  e.  U )  ->  E. w  e.  X  <. w ,  w >.  e.  (  _I  |`  X ) )
22 ne0i 3921 . . . . . . . . 9  |-  ( <.
w ,  w >.  e.  (  _I  |`  X )  ->  (  _I  |`  X )  =/=  (/) )
2322rexlimivw 3029 . . . . . . . 8  |-  ( E. w  e.  X  <. w ,  w >.  e.  (  _I  |`  X )  ->  (  _I  |`  X )  =/=  (/) )
2421, 23syl 17 . . . . . . 7  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  v  e.  U )  ->  (  _I  |`  X )  =/=  (/) )
25 ssn0 3976 . . . . . . 7  |-  ( ( (  _I  |`  X ) 
C_  v  /\  (  _I  |`  X )  =/=  (/) )  ->  v  =/=  (/) )
2613, 24, 25syl2anc 693 . . . . . 6  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  v  e.  U )  ->  v  =/=  (/) )
2726nelrdva 3417 . . . . 5  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  -.  (/)  e.  U
)
28 df-nel 2898 . . . . 5  |-  ( (/)  e/  U  <->  -.  (/)  e.  U
)
2927, 28sylibr 224 . . . 4  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  (/)  e/  U
)
3011simp2d 1074 . . . . . . . . 9  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  v  e.  U )  ->  A. w  e.  U  ( v  i^i  w )  e.  U
)
3130r19.21bi 2932 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X ) )  /\  v  e.  U )  /\  w  e.  U
)  ->  ( v  i^i  w )  e.  U
)
3214inex2 4800 . . . . . . . . . 10  |-  ( v  i^i  w )  e. 
_V
3332pwid 4174 . . . . . . . . 9  |-  ( v  i^i  w )  e. 
~P ( v  i^i  w )
3433a1i 11 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X ) )  /\  v  e.  U )  /\  w  e.  U
)  ->  ( v  i^i  w )  e.  ~P ( v  i^i  w
) )
3531, 34elind 3798 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X ) )  /\  v  e.  U )  /\  w  e.  U
)  ->  ( v  i^i  w )  e.  ( U  i^i  ~P (
v  i^i  w )
) )
36 ne0i 3921 . . . . . . 7  |-  ( ( v  i^i  w )  e.  ( U  i^i  ~P ( v  i^i  w
) )  ->  ( U  i^i  ~P ( v  i^i  w ) )  =/=  (/) )
3735, 36syl 17 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X ) )  /\  v  e.  U )  /\  w  e.  U
)  ->  ( U  i^i  ~P ( v  i^i  w ) )  =/=  (/) )
3837ralrimiva 2966 . . . . 5  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  v  e.  U )  ->  A. w  e.  U  ( U  i^i  ~P ( v  i^i  w ) )  =/=  (/) )
3938ralrimiva 2966 . . . 4  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  A. v  e.  U  A. w  e.  U  ( U  i^i  ~P ( v  i^i  w ) )  =/=  (/) )
409, 29, 393jca 1242 . . 3  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  ( U  =/=  (/)  /\  (/)  e/  U  /\  A. v  e.  U  A. w  e.  U  ( U  i^i  ~P (
v  i^i  w )
)  =/=  (/) ) )
41 xpexg 6960 . . . . . 6  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
421, 1, 41syl2anc 693 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  ( X  X.  X )  e.  _V )
43 isfbas 21633 . . . . 5  |-  ( ( X  X.  X )  e.  _V  ->  ( U  e.  ( fBas `  ( X  X.  X
) )  <->  ( U  C_ 
~P ( X  X.  X )  /\  ( U  =/=  (/)  /\  (/)  e/  U  /\  A. v  e.  U  A. w  e.  U  ( U  i^i  ~P (
v  i^i  w )
)  =/=  (/) ) ) ) )
4442, 43syl 17 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  ( U  e.  ( fBas `  ( X  X.  X ) )  <-> 
( U  C_  ~P ( X  X.  X
)  /\  ( U  =/=  (/)  /\  (/)  e/  U  /\  A. v  e.  U  A. w  e.  U  ( U  i^i  ~P (
v  i^i  w )
)  =/=  (/) ) ) ) )
4544adantl 482 . . 3  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  ( U  e.  ( fBas `  ( X  X.  X ) )  <-> 
( U  C_  ~P ( X  X.  X
)  /\  ( U  =/=  (/)  /\  (/)  e/  U  /\  A. v  e.  U  A. w  e.  U  ( U  i^i  ~P (
v  i^i  w )
)  =/=  (/) ) ) ) )
466, 40, 45mpbir2and 957 . 2  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  U  e.  ( fBas `  ( X  X.  X ) ) )
47 n0 3931 . . . . 5  |-  ( ( U  i^i  ~P w
)  =/=  (/)  <->  E. v 
v  e.  ( U  i^i  ~P w ) )
48 elin 3796 . . . . . . 7  |-  ( v  e.  ( U  i^i  ~P w )  <->  ( v  e.  U  /\  v  e.  ~P w ) )
49 selpw 4165 . . . . . . . 8  |-  ( v  e.  ~P w  <->  v  C_  w )
5049anbi2i 730 . . . . . . 7  |-  ( ( v  e.  U  /\  v  e.  ~P w
)  <->  ( v  e.  U  /\  v  C_  w ) )
5148, 50bitri 264 . . . . . 6  |-  ( v  e.  ( U  i^i  ~P w )  <->  ( v  e.  U  /\  v  C_  w ) )
5251exbii 1774 . . . . 5  |-  ( E. v  v  e.  ( U  i^i  ~P w
)  <->  E. v ( v  e.  U  /\  v  C_  w ) )
5347, 52bitri 264 . . . 4  |-  ( ( U  i^i  ~P w
)  =/=  (/)  <->  E. v
( v  e.  U  /\  v  C_  w ) )
5411simp1d 1073 . . . . . . . 8  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  v  e.  U )  ->  A. w  e.  ~P  ( X  X.  X ) ( v 
C_  w  ->  w  e.  U ) )
5554r19.21bi 2932 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X ) )  /\  v  e.  U )  /\  w  e.  ~P ( X  X.  X
) )  ->  (
v  C_  w  ->  w  e.  U ) )
5655an32s 846 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X ) )  /\  w  e.  ~P ( X  X.  X ) )  /\  v  e.  U
)  ->  ( v  C_  w  ->  w  e.  U ) )
5756expimpd 629 . . . . 5  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  w  e.  ~P ( X  X.  X
) )  ->  (
( v  e.  U  /\  v  C_  w )  ->  w  e.  U
) )
5857exlimdv 1861 . . . 4  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  w  e.  ~P ( X  X.  X
) )  ->  ( E. v ( v  e.  U  /\  v  C_  w )  ->  w  e.  U ) )
5953, 58syl5bi 232 . . 3  |-  ( ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  /\  w  e.  ~P ( X  X.  X
) )  ->  (
( U  i^i  ~P w )  =/=  (/)  ->  w  e.  U ) )
6059ralrimiva 2966 . 2  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  A. w  e.  ~P  ( X  X.  X ) ( ( U  i^i  ~P w
)  =/=  (/)  ->  w  e.  U ) )
61 isfil 21651 . 2  |-  ( U  e.  ( Fil `  ( X  X.  X ) )  <-> 
( U  e.  (
fBas `  ( X  X.  X ) )  /\  A. w  e.  ~P  ( X  X.  X ) ( ( U  i^i  ~P w )  =/=  (/)  ->  w  e.  U ) ) )
6246, 60, 61sylanbrc 698 1  |-  ( ( X  =/=  (/)  /\  U  e.  (UnifOn `  X )
)  ->  U  e.  ( Fil `  ( X  X.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   E.wex 1704    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   <.cop 4183    _I cid 5023    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118   ` cfv 5888   fBascfbas 19734   Filcfil 21649  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743  df-fil 21650  df-ust 22004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator