| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metustfbas | Structured version Visualization version Unicode version | ||
| Description: The filter base generated
by a metric |
| Ref | Expression |
|---|---|
| metust.1 |
|
| Ref | Expression |
|---|---|
| metustfbas |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 |
. . . . . . 7
| |
| 2 | 1 | metustel 22355 |
. . . . . 6
|
| 3 | simpr 477 |
. . . . . . . . 9
| |
| 4 | cnvimass 5485 |
. . . . . . . . . 10
| |
| 5 | psmetf 22111 |
. . . . . . . . . . . 12
| |
| 6 | fdm 6051 |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . 11
|
| 8 | 7 | adantr 481 |
. . . . . . . . . 10
|
| 9 | 4, 8 | syl5sseq 3653 |
. . . . . . . . 9
|
| 10 | 3, 9 | eqsstrd 3639 |
. . . . . . . 8
|
| 11 | 10 | ex 450 |
. . . . . . 7
|
| 12 | 11 | rexlimdvw 3034 |
. . . . . 6
|
| 13 | 2, 12 | sylbid 230 |
. . . . 5
|
| 14 | 13 | ralrimiv 2965 |
. . . 4
|
| 15 | pwssb 4612 |
. . . 4
| |
| 16 | 14, 15 | sylibr 224 |
. . 3
|
| 17 | 16 | adantl 482 |
. 2
|
| 18 | cnvexg 7112 |
. . . . . . 7
| |
| 19 | imaexg 7103 |
. . . . . . 7
| |
| 20 | elisset 3215 |
. . . . . . 7
| |
| 21 | 1rp 11836 |
. . . . . . . . 9
| |
| 22 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 23 | 22 | imaeq2d 5466 |
. . . . . . . . . . 11
|
| 24 | 23 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 25 | 24 | rspcev 3309 |
. . . . . . . . 9
|
| 26 | 21, 25 | mpan 706 |
. . . . . . . 8
|
| 27 | 26 | eximi 1762 |
. . . . . . 7
|
| 28 | 18, 19, 20, 27 | 4syl 19 |
. . . . . 6
|
| 29 | 2 | exbidv 1850 |
. . . . . 6
|
| 30 | 28, 29 | mpbird 247 |
. . . . 5
|
| 31 | 30 | adantl 482 |
. . . 4
|
| 32 | n0 3931 |
. . . 4
| |
| 33 | 31, 32 | sylibr 224 |
. . 3
|
| 34 | 1 | metustid 22359 |
. . . . . . 7
|
| 35 | 34 | adantll 750 |
. . . . . 6
|
| 36 | n0 3931 |
. . . . . . . . . 10
| |
| 37 | 36 | biimpi 206 |
. . . . . . . . 9
|
| 38 | 37 | adantr 481 |
. . . . . . . 8
|
| 39 | opelresi 5408 |
. . . . . . . . . . 11
| |
| 40 | 39 | ibir 257 |
. . . . . . . . . 10
|
| 41 | ne0i 3921 |
. . . . . . . . . 10
| |
| 42 | 40, 41 | syl 17 |
. . . . . . . . 9
|
| 43 | 42 | exlimiv 1858 |
. . . . . . . 8
|
| 44 | 38, 43 | syl 17 |
. . . . . . 7
|
| 45 | 44 | adantr 481 |
. . . . . 6
|
| 46 | ssn0 3976 |
. . . . . 6
| |
| 47 | 35, 45, 46 | syl2anc 693 |
. . . . 5
|
| 48 | 47 | nelrdva 3417 |
. . . 4
|
| 49 | df-nel 2898 |
. . . 4
| |
| 50 | 48, 49 | sylibr 224 |
. . 3
|
| 51 | df-ss 3588 |
. . . . . . . . 9
| |
| 52 | 51 | biimpi 206 |
. . . . . . . 8
|
| 53 | 52 | adantl 482 |
. . . . . . 7
|
| 54 | simplrl 800 |
. . . . . . 7
| |
| 55 | 53, 54 | eqeltrd 2701 |
. . . . . 6
|
| 56 | sseqin2 3817 |
. . . . . . . . 9
| |
| 57 | 56 | biimpi 206 |
. . . . . . . 8
|
| 58 | 57 | adantl 482 |
. . . . . . 7
|
| 59 | simplrr 801 |
. . . . . . 7
| |
| 60 | 58, 59 | eqeltrd 2701 |
. . . . . 6
|
| 61 | simplr 792 |
. . . . . . 7
| |
| 62 | simprl 794 |
. . . . . . 7
| |
| 63 | simprr 796 |
. . . . . . 7
| |
| 64 | 1 | metustto 22358 |
. . . . . . 7
|
| 65 | 61, 62, 63, 64 | syl3anc 1326 |
. . . . . 6
|
| 66 | 55, 60, 65 | mpjaodan 827 |
. . . . 5
|
| 67 | vex 3203 |
. . . . . . . . 9
| |
| 68 | 67 | inex1 4799 |
. . . . . . . 8
|
| 69 | 68 | pwid 4174 |
. . . . . . 7
|
| 70 | 69 | a1i 11 |
. . . . . 6
|
| 71 | 70 | elpwid 4170 |
. . . . 5
|
| 72 | sseq1 3626 |
. . . . . 6
| |
| 73 | 72 | rspcev 3309 |
. . . . 5
|
| 74 | 66, 71, 73 | syl2anc 693 |
. . . 4
|
| 75 | 74 | ralrimivva 2971 |
. . 3
|
| 76 | 33, 50, 75 | 3jca 1242 |
. 2
|
| 77 | elfvex 6221 |
. . . . 5
| |
| 78 | 77 | adantl 482 |
. . . 4
|
| 79 | xpexg 6960 |
. . . 4
| |
| 80 | 78, 78, 79 | syl2anc 693 |
. . 3
|
| 81 | isfbas2 21639 |
. . 3
| |
| 82 | 80, 81 | syl 17 |
. 2
|
| 83 | 17, 76, 82 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-rp 11833 df-ico 12181 df-psmet 19738 df-fbas 19743 |
| This theorem is referenced by: metust 22363 cfilucfil 22364 metuel 22369 psmetutop 22372 restmetu 22375 metucn 22376 |
| Copyright terms: Public domain | W3C validator |