MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeu Structured version   Visualization version   Unicode version

Theorem nfeu 2486
Description: Bound-variable hypothesis builder for uniqueness. Note that 
x and  y needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
nfeu.1  |-  F/ x ph
Assertion
Ref Expression
nfeu  |-  F/ x E! y ph

Proof of Theorem nfeu
StepHypRef Expression
1 nftru 1730 . . 3  |-  F/ y T.
2 nfeu.1 . . . 4  |-  F/ x ph
32a1i 11 . . 3  |-  ( T. 
->  F/ x ph )
41, 3nfeud 2484 . 2  |-  ( T. 
->  F/ x E! y
ph )
54trud 1493 1  |-  F/ x E! y ph
Colors of variables: wff setvar class
Syntax hints:   T. wtru 1484   F/wnf 1708   E!weu 2470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474
This theorem is referenced by:  2eu7  2559  2eu8  2560  eusv2nf  4864  reusv2lem3  4871  bnj1489  31124  setrec2  42442
  Copyright terms: Public domain W3C validator