Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2 Structured version   Visualization version   Unicode version

Theorem setrec2 42442
Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs ( F ) is a subclass of all classes  C that are closed under  F. Taken together, theorems setrec1 42438 and setrec2v 42443 uniquely determine setrecs ( F ) to be the minimal class closed under  F.

We express this by saying that if  F respects the  C_ relation and  C is closed under  F, then  B  C_  C. By substituting strategically constructed classes for  C, we can easily prove many useful properties. Although this theorem cannot show equality between  B and  C, if we intend to prove equality between  B and some particular class (such as 
On), we first apply this theorem, then the relevant induction theorem (such as tfi 7053) to the other class.

(Contributed by Emmett Weisz, 2-Sep-2021.)

Hypotheses
Ref Expression
setrec2.1  |-  F/_ a F
setrec2.2  |-  B  = setrecs
( F )
setrec2.3  |-  ( ph  ->  A. a ( a 
C_  C  ->  ( F `  a )  C_  C ) )
Assertion
Ref Expression
setrec2  |-  ( ph  ->  B  C_  C )
Distinct variable group:    C, a
Allowed substitution hints:    ph( a)    B( a)    F( a)

Proof of Theorem setrec2
Dummy variables  x  w  y  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setrec2.1 . . 3  |-  F/_ a F
2 nfcv 2764 . . . . . 6  |-  F/_ a
x
3 nfcv 2764 . . . . . 6  |-  F/_ a
u
42, 1, 3nfbr 4699 . . . . 5  |-  F/ a  x F u
54nfeu 2486 . . . 4  |-  F/ a E! u  x F u
65nfab 2769 . . 3  |-  F/_ a { x  |  E! u  x F u }
71, 6nfres 5398 . 2  |-  F/_ a
( F  |`  { x  |  E! u  x F u } )
8 setrec2.2 . . 3  |-  B  = setrecs
( F )
9 setrec2lem1 42440 . . . . . . . . . . . 12  |-  ( ( F  |`  { x  |  E! u  x F u } ) `  w )  =  ( F `  w )
109sseq1i 3629 . . . . . . . . . . 11  |-  ( ( ( F  |`  { x  |  E! u  x F u } ) `  w )  C_  z  <->  ( F `  w ) 
C_  z )
1110imbi2i 326 . . . . . . . . . 10  |-  ( ( w  C_  z  ->  ( ( F  |`  { x  |  E! u  x F u } ) `  w )  C_  z
)  <->  ( w  C_  z  ->  ( F `  w )  C_  z
) )
1211imbi2i 326 . . . . . . . . 9  |-  ( ( w  C_  y  ->  ( w  C_  z  ->  ( ( F  |`  { x  |  E! u  x F u } ) `  w )  C_  z
) )  <->  ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w )  C_  z
) ) )
1312albii 1747 . . . . . . . 8  |-  ( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( ( F  |`  { x  |  E! u  x F u }
) `  w )  C_  z ) )  <->  A. w
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
) )
1413imbi1i 339 . . . . . . 7  |-  ( ( A. w ( w 
C_  y  ->  (
w  C_  z  ->  ( ( F  |`  { x  |  E! u  x F u } ) `  w )  C_  z
) )  ->  y  C_  z )  <->  ( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w )  C_  z
) )  ->  y  C_  z ) )
1514albii 1747 . . . . . 6  |-  ( A. z ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( ( F  |`  { x  |  E! u  x F u }
) `  w )  C_  z ) )  -> 
y  C_  z )  <->  A. z ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  y  C_  z ) )
1615abbii 2739 . . . . 5  |-  { y  |  A. z ( A. w ( w 
C_  y  ->  (
w  C_  z  ->  ( ( F  |`  { x  |  E! u  x F u } ) `  w )  C_  z
) )  ->  y  C_  z ) }  =  { y  |  A. z ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  y  C_  z ) }
1716unieqi 4445 . . . 4  |-  U. {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( ( F  |`  { x  |  E! u  x F u } ) `  w )  C_  z
) )  ->  y  C_  z ) }  =  U. { y  |  A. z ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  y  C_  z ) }
18 df-setrecs 42431 . . . 4  |- setrecs ( ( F  |`  { x  |  E! u  x F u } ) )  =  U. { y  |  A. z ( A. w ( w 
C_  y  ->  (
w  C_  z  ->  ( ( F  |`  { x  |  E! u  x F u } ) `  w )  C_  z
) )  ->  y  C_  z ) }
19 df-setrecs 42431 . . . 4  |- setrecs ( F )  =  U. {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
) }
2017, 18, 193eqtr4ri 2655 . . 3  |- setrecs ( F )  = setrecs ( ( F  |`  { x  |  E! u  x F u } ) )
218, 20eqtri 2644 . 2  |-  B  = setrecs
( ( F  |`  { x  |  E! u  x F u }
) )
22 setrec2lem2 42441 . 2  |-  Fun  ( F  |`  { x  |  E! u  x F u } )
23 setrec2.3 . . 3  |-  ( ph  ->  A. a ( a 
C_  C  ->  ( F `  a )  C_  C ) )
24 setrec2lem1 42440 . . . . . 6  |-  ( ( F  |`  { x  |  E! u  x F u } ) `  a )  =  ( F `  a )
2524sseq1i 3629 . . . . 5  |-  ( ( ( F  |`  { x  |  E! u  x F u } ) `  a )  C_  C  <->  ( F `  a ) 
C_  C )
2625imbi2i 326 . . . 4  |-  ( ( a  C_  C  ->  ( ( F  |`  { x  |  E! u  x F u } ) `  a )  C_  C
)  <->  ( a  C_  C  ->  ( F `  a )  C_  C
) )
2726albii 1747 . . 3  |-  ( A. a ( a  C_  C  ->  ( ( F  |`  { x  |  E! u  x F u }
) `  a )  C_  C )  <->  A. a
( a  C_  C  ->  ( F `  a
)  C_  C )
)
2823, 27sylibr 224 . 2  |-  ( ph  ->  A. a ( a 
C_  C  ->  (
( F  |`  { x  |  E! u  x F u } ) `  a )  C_  C
) )
297, 21, 22, 28setrec2fun 42439 1  |-  ( ph  ->  B  C_  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481    = wceq 1483   E!weu 2470   {cab 2608   F/_wnfc 2751    C_ wss 3574   U.cuni 4436   class class class wbr 4653    |` cres 5116   ` cfv 5888  setrecscsetrecs 42430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-setrecs 42431
This theorem is referenced by:  setrec2v  42443
  Copyright terms: Public domain W3C validator