| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2 | Structured version Visualization version Unicode version | ||
| Description: This is the second of two
fundamental theorems about set recursion from
which all other facts will be derived. It states that the class
setrecs
We express this by saying that if (Contributed by Emmett Weisz, 2-Sep-2021.) |
| Ref | Expression |
|---|---|
| setrec2.1 |
|
| setrec2.2 |
|
| setrec2.3 |
|
| Ref | Expression |
|---|---|
| setrec2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setrec2.1 |
. . 3
| |
| 2 | nfcv 2764 |
. . . . . 6
| |
| 3 | nfcv 2764 |
. . . . . 6
| |
| 4 | 2, 1, 3 | nfbr 4699 |
. . . . 5
|
| 5 | 4 | nfeu 2486 |
. . . 4
|
| 6 | 5 | nfab 2769 |
. . 3
|
| 7 | 1, 6 | nfres 5398 |
. 2
|
| 8 | setrec2.2 |
. . 3
| |
| 9 | setrec2lem1 42440 |
. . . . . . . . . . . 12
| |
| 10 | 9 | sseq1i 3629 |
. . . . . . . . . . 11
|
| 11 | 10 | imbi2i 326 |
. . . . . . . . . 10
|
| 12 | 11 | imbi2i 326 |
. . . . . . . . 9
|
| 13 | 12 | albii 1747 |
. . . . . . . 8
|
| 14 | 13 | imbi1i 339 |
. . . . . . 7
|
| 15 | 14 | albii 1747 |
. . . . . 6
|
| 16 | 15 | abbii 2739 |
. . . . 5
|
| 17 | 16 | unieqi 4445 |
. . . 4
|
| 18 | df-setrecs 42431 |
. . . 4
| |
| 19 | df-setrecs 42431 |
. . . 4
| |
| 20 | 17, 18, 19 | 3eqtr4ri 2655 |
. . 3
|
| 21 | 8, 20 | eqtri 2644 |
. 2
|
| 22 | setrec2lem2 42441 |
. 2
| |
| 23 | setrec2.3 |
. . 3
| |
| 24 | setrec2lem1 42440 |
. . . . . 6
| |
| 25 | 24 | sseq1i 3629 |
. . . . 5
|
| 26 | 25 | imbi2i 326 |
. . . 4
|
| 27 | 26 | albii 1747 |
. . 3
|
| 28 | 23, 27 | sylibr 224 |
. 2
|
| 29 | 7, 21, 22, 28 | setrec2fun 42439 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-setrecs 42431 |
| This theorem is referenced by: setrec2v 42443 |
| Copyright terms: Public domain | W3C validator |