Proof of Theorem reusv2lem3
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . . 4
  
  
   
  |
| 2 | | nfv 1843 |
. . . . . 6
  
 |
| 3 | | nfeu1 2480 |
. . . . . 6
      |
| 4 | 2, 3 | nfan 1828 |
. . . . 5
      
  |
| 5 | | euex 2494 |
. . . . . . . 8
      
  |
| 6 | | rexn0 4074 |
. . . . . . . . 9
    |
| 7 | 6 | exlimiv 1858 |
. . . . . . . 8
      |
| 8 | | r19.2z 4060 |
. . . . . . . . 9
  
 
  |
| 9 | 8 | ex 450 |
. . . . . . . 8

 

   |
| 10 | 5, 7, 9 | 3syl 18 |
. . . . . . 7
     

   |
| 11 | 10 | adantl 482 |
. . . . . 6
  
  
   
   |
| 12 | | nfra1 2941 |
. . . . . . . 8
  
 |
| 13 | | nfre1 3005 |
. . . . . . . . 9
  
 |
| 14 | 13 | nfeu 2486 |
. . . . . . . 8
    
 |
| 15 | 12, 14 | nfan 1828 |
. . . . . . 7
      
  |
| 16 | | rsp 2929 |
. . . . . . . . . . . . . 14
 

   |
| 17 | 16 | impcom 446 |
. . . . . . . . . . . . 13
      |
| 18 | | isset 3207 |
. . . . . . . . . . . . 13


  |
| 19 | 17, 18 | sylib 208 |
. . . . . . . . . . . 12
    
  |
| 20 | 19 | adantrr 753 |
. . . . . . . . . . 11
   
  
 

  |
| 21 | | rspe 3003 |
. . . . . . . . . . . . . . 15
 
 
  |
| 22 | 21 | ex 450 |
. . . . . . . . . . . . . 14
  
   |
| 23 | 22 | ancrd 577 |
. . . . . . . . . . . . 13
        |
| 24 | 23 | eximdv 1846 |
. . . . . . . . . . . 12
  
        |
| 25 | 24 | imp 445 |
. . . . . . . . . . 11
   
       |
| 26 | 20, 25 | syldan 487 |
. . . . . . . . . 10
   
  
 
       |
| 27 | | eupick 2536 |
. . . . . . . . . 10
    
   
 
 
   |
| 28 | 1, 26, 27 | syl2an2 875 |
. . . . . . . . 9
   
  
 
 
   |
| 29 | 28 | ex 450 |
. . . . . . . 8
      
  
    |
| 30 | 29 | com3l 89 |
. . . . . . 7
  
  
   
    |
| 31 | 15, 13, 30 | ralrimd 2959 |
. . . . . 6
  
  
   
   |
| 32 | 11, 31 | impbid 202 |
. . . . 5
  
  
   
   |
| 33 | 4, 32 | eubid 2488 |
. . . 4
  
  
    
  
   |
| 34 | 1, 33 | mpbird 247 |
. . 3
  
  
   
  |
| 35 | 34 | ex 450 |
. 2
 
   
      |
| 36 | | reusv2lem2 4869 |
. 2
      
  |
| 37 | 35, 36 | impbid1 215 |
1
 
   
  
   |