MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreu1 Structured version   Visualization version   Unicode version

Theorem nfreu1 3110
Description: The setvar  x is not free in  E! x  e.  A ph. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfreu1  |-  F/ x E! x  e.  A  ph

Proof of Theorem nfreu1
StepHypRef Expression
1 df-reu 2919 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 nfeu1 2480 . 2  |-  F/ x E! x ( x  e.  A  /\  ph )
31, 2nfxfr 1779 1  |-  F/ x E! x  e.  A  ph
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384   F/wnf 1708    e. wcel 1990   E!weu 2470   E!wreu 2914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705  df-nf 1710  df-eu 2474  df-reu 2919
This theorem is referenced by:  riota2df  6631  2reu8  41192  iccpartdisj  41373
  Copyright terms: Public domain W3C validator