| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfso | Structured version Visualization version Unicode version | ||
| Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| Ref | Expression |
|---|---|
| nfpo.r |
|
| nfpo.a |
|
| Ref | Expression |
|---|---|
| nfso |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-so 5036 |
. 2
| |
| 2 | nfpo.r |
. . . 4
| |
| 3 | nfpo.a |
. . . 4
| |
| 4 | 2, 3 | nfpo 5040 |
. . 3
|
| 5 | nfcv 2764 |
. . . . . . 7
| |
| 6 | nfcv 2764 |
. . . . . . 7
| |
| 7 | 5, 2, 6 | nfbr 4699 |
. . . . . 6
|
| 8 | nfv 1843 |
. . . . . 6
| |
| 9 | 6, 2, 5 | nfbr 4699 |
. . . . . 6
|
| 10 | 7, 8, 9 | nf3or 1835 |
. . . . 5
|
| 11 | 3, 10 | nfral 2945 |
. . . 4
|
| 12 | 3, 11 | nfral 2945 |
. . 3
|
| 13 | 4, 12 | nfan 1828 |
. 2
|
| 14 | 1, 13 | nfxfr 1779 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-po 5035 df-so 5036 |
| This theorem is referenced by: nfwe 5090 |
| Copyright terms: Public domain | W3C validator |