MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfso Structured version   Visualization version   Unicode version

Theorem nfso 5041
Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r  |-  F/_ x R
nfpo.a  |-  F/_ x A
Assertion
Ref Expression
nfso  |-  F/ x  R  Or  A

Proof of Theorem nfso
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-so 5036 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. a  e.  A  A. b  e.  A  ( a R b  \/  a  =  b  \/  b R a ) ) )
2 nfpo.r . . . 4  |-  F/_ x R
3 nfpo.a . . . 4  |-  F/_ x A
42, 3nfpo 5040 . . 3  |-  F/ x  R  Po  A
5 nfcv 2764 . . . . . . 7  |-  F/_ x
a
6 nfcv 2764 . . . . . . 7  |-  F/_ x
b
75, 2, 6nfbr 4699 . . . . . 6  |-  F/ x  a R b
8 nfv 1843 . . . . . 6  |-  F/ x  a  =  b
96, 2, 5nfbr 4699 . . . . . 6  |-  F/ x  b R a
107, 8, 9nf3or 1835 . . . . 5  |-  F/ x
( a R b  \/  a  =  b  \/  b R a )
113, 10nfral 2945 . . . 4  |-  F/ x A. b  e.  A  ( a R b  \/  a  =  b  \/  b R a )
123, 11nfral 2945 . . 3  |-  F/ x A. a  e.  A  A. b  e.  A  ( a R b  \/  a  =  b  \/  b R a )
134, 12nfan 1828 . 2  |-  F/ x
( R  Po  A  /\  A. a  e.  A  A. b  e.  A  ( a R b  \/  a  =  b  \/  b R a ) )
141, 13nfxfr 1779 1  |-  F/ x  R  Or  A
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    \/ w3o 1036   F/wnf 1708   F/_wnfc 2751   A.wral 2912   class class class wbr 4653    Po wpo 5033    Or wor 5034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-po 5035  df-so 5036
This theorem is referenced by:  nfwe  5090
  Copyright terms: Public domain W3C validator