MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrecs Structured version   Visualization version   Unicode version

Theorem nfwrecs 7409
Description: Bound-variable hypothesis builder for the well-founded recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.)
Hypotheses
Ref Expression
nfwrecs.1  |-  F/_ x R
nfwrecs.2  |-  F/_ x A
nfwrecs.3  |-  F/_ x F
Assertion
Ref Expression
nfwrecs  |-  F/_ xwrecs ( R ,  A ,  F )

Proof of Theorem nfwrecs
Dummy variables  f 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wrecs 7407 . 2  |- wrecs ( R ,  A ,  F
)  =  U. {
f  |  E. y
( f  Fn  y  /\  ( y  C_  A  /\  A. z  e.  y 
Pred ( R ,  A ,  z )  C_  y )  /\  A. z  e.  y  (
f `  z )  =  ( F `  ( f  |`  Pred ( R ,  A , 
z ) ) ) ) }
2 nfv 1843 . . . . . 6  |-  F/ x  f  Fn  y
3 nfcv 2764 . . . . . . . 8  |-  F/_ x
y
4 nfwrecs.2 . . . . . . . 8  |-  F/_ x A
53, 4nfss 3596 . . . . . . 7  |-  F/ x  y  C_  A
6 nfwrecs.1 . . . . . . . . . 10  |-  F/_ x R
7 nfcv 2764 . . . . . . . . . 10  |-  F/_ x
z
86, 4, 7nfpred 5685 . . . . . . . . 9  |-  F/_ x Pred ( R ,  A ,  z )
98, 3nfss 3596 . . . . . . . 8  |-  F/ x Pred ( R ,  A ,  z )  C_  y
103, 9nfral 2945 . . . . . . 7  |-  F/ x A. z  e.  y  Pred ( R ,  A ,  z )  C_  y
115, 10nfan 1828 . . . . . 6  |-  F/ x
( y  C_  A  /\  A. z  e.  y 
Pred ( R ,  A ,  z )  C_  y )
12 nfwrecs.3 . . . . . . . . 9  |-  F/_ x F
13 nfcv 2764 . . . . . . . . . 10  |-  F/_ x
f
1413, 8nfres 5398 . . . . . . . . 9  |-  F/_ x
( f  |`  Pred ( R ,  A , 
z ) )
1512, 14nffv 6198 . . . . . . . 8  |-  F/_ x
( F `  (
f  |`  Pred ( R ,  A ,  z )
) )
1615nfeq2 2780 . . . . . . 7  |-  F/ x
( f `  z
)  =  ( F `
 ( f  |`  Pred ( R ,  A ,  z ) ) )
173, 16nfral 2945 . . . . . 6  |-  F/ x A. z  e.  y 
( f `  z
)  =  ( F `
 ( f  |`  Pred ( R ,  A ,  z ) ) )
182, 11, 17nf3an 1831 . . . . 5  |-  F/ x
( f  Fn  y  /\  ( y  C_  A  /\  A. z  e.  y 
Pred ( R ,  A ,  z )  C_  y )  /\  A. z  e.  y  (
f `  z )  =  ( F `  ( f  |`  Pred ( R ,  A , 
z ) ) ) )
1918nfex 2154 . . . 4  |-  F/ x E. y ( f  Fn  y  /\  ( y 
C_  A  /\  A. z  e.  y  Pred ( R ,  A , 
z )  C_  y
)  /\  A. z  e.  y  ( f `  z )  =  ( F `  ( f  |`  Pred ( R ,  A ,  z )
) ) )
2019nfab 2769 . . 3  |-  F/_ x { f  |  E. y ( f  Fn  y  /\  ( y 
C_  A  /\  A. z  e.  y  Pred ( R ,  A , 
z )  C_  y
)  /\  A. z  e.  y  ( f `  z )  =  ( F `  ( f  |`  Pred ( R ,  A ,  z )
) ) ) }
2120nfuni 4442 . 2  |-  F/_ x U. { f  |  E. y ( f  Fn  y  /\  ( y 
C_  A  /\  A. z  e.  y  Pred ( R ,  A , 
z )  C_  y
)  /\  A. z  e.  y  ( f `  z )  =  ( F `  ( f  |`  Pred ( R ,  A ,  z )
) ) ) }
221, 21nfcxfr 2762 1  |-  F/_ xwrecs ( R ,  A ,  F )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704   {cab 2608   F/_wnfc 2751   A.wral 2912    C_ wss 3574   U.cuni 4436    |` cres 5116   Predcpred 5679    Fn wfn 5883   ` cfv 5888  wrecscwrecs 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fv 5896  df-wrecs 7407
This theorem is referenced by:  nfrecs  7471
  Copyright terms: Public domain W3C validator