| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-wrecs | Structured version Visualization version Unicode version | ||
| Description: Here we define the
well-founded recursive function generator. This
function takes the usual expressions from recursion theorems and forms a
unified definition. Specifically, given a function |
| Ref | Expression |
|---|---|
| df-wrecs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | cR |
. . 3
| |
| 3 | cF |
. . 3
| |
| 4 | 1, 2, 3 | cwrecs 7406 |
. 2
|
| 5 | vf |
. . . . . . . 8
| |
| 6 | 5 | cv 1482 |
. . . . . . 7
|
| 7 | vx |
. . . . . . . 8
| |
| 8 | 7 | cv 1482 |
. . . . . . 7
|
| 9 | 6, 8 | wfn 5883 |
. . . . . 6
|
| 10 | 8, 1 | wss 3574 |
. . . . . . 7
|
| 11 | vy |
. . . . . . . . . . 11
| |
| 12 | 11 | cv 1482 |
. . . . . . . . . 10
|
| 13 | 1, 2, 12 | cpred 5679 |
. . . . . . . . 9
|
| 14 | 13, 8 | wss 3574 |
. . . . . . . 8
|
| 15 | 14, 11, 8 | wral 2912 |
. . . . . . 7
|
| 16 | 10, 15 | wa 384 |
. . . . . 6
|
| 17 | 12, 6 | cfv 5888 |
. . . . . . . 8
|
| 18 | 6, 13 | cres 5116 |
. . . . . . . . 9
|
| 19 | 18, 3 | cfv 5888 |
. . . . . . . 8
|
| 20 | 17, 19 | wceq 1483 |
. . . . . . 7
|
| 21 | 20, 11, 8 | wral 2912 |
. . . . . 6
|
| 22 | 9, 16, 21 | w3a 1037 |
. . . . 5
|
| 23 | 22, 7 | wex 1704 |
. . . 4
|
| 24 | 23, 5 | cab 2608 |
. . 3
|
| 25 | 24 | cuni 4436 |
. 2
|
| 26 | 4, 25 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: wrecseq123 7408 nfwrecs 7409 wfrrel 7420 wfrdmss 7421 wfrdmcl 7423 wfrfun 7425 wfrlem12 7426 wfrlem16 7430 wfrlem17 7431 dfrecs3 7469 csbwrecsg 33173 |
| Copyright terms: Public domain | W3C validator |