MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyi Structured version   Visualization version   Unicode version

Theorem nllyi 21278
Description: The property of an n-locally  A topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyi  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) )
Distinct variable groups:    u, A    u, P    u, U    u, J

Proof of Theorem nllyi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlly 21272 . . . 4  |-  ( J  e. 𝑛Locally  A  <->  ( J  e. 
Top  /\  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
) )
21simprbi 480 . . 3  |-  ( J  e. 𝑛Locally  A  ->  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
)
3 pweq 4161 . . . . . . 7  |-  ( x  =  U  ->  ~P x  =  ~P U
)
43ineq2d 3814 . . . . . 6  |-  ( x  =  U  ->  (
( ( nei `  J
) `  { y } )  i^i  ~P x )  =  ( ( ( nei `  J
) `  { y } )  i^i  ~P U ) )
54rexeqdv 3145 . . . . 5  |-  ( x  =  U  ->  ( E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  A  <->  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P U ) ( Jt  u )  e.  A
) )
65raleqbi1dv 3146 . . . 4  |-  ( x  =  U  ->  ( A. y  e.  x  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  A  <->  A. y  e.  U  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P U ) ( Jt  u )  e.  A
) )
76rspccva 3308 . . 3  |-  ( ( A. x  e.  J  A. y  e.  x  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  A  /\  U  e.  J )  ->  A. y  e.  U  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P U ) ( Jt  u )  e.  A )
82, 7sylan 488 . 2  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J )  ->  A. y  e.  U  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P U ) ( Jt  u )  e.  A
)
9 elin 3796 . . . . . . 7  |-  ( u  e.  ( ( ( nei `  J ) `
 { y } )  i^i  ~P U
)  <->  ( u  e.  ( ( nei `  J
) `  { y } )  /\  u  e.  ~P U ) )
10 sneq 4187 . . . . . . . . . 10  |-  ( y  =  P  ->  { y }  =  { P } )
1110fveq2d 6195 . . . . . . . . 9  |-  ( y  =  P  ->  (
( nei `  J
) `  { y } )  =  ( ( nei `  J
) `  { P } ) )
1211eleq2d 2687 . . . . . . . 8  |-  ( y  =  P  ->  (
u  e.  ( ( nei `  J ) `
 { y } )  <->  u  e.  (
( nei `  J
) `  { P } ) ) )
13 selpw 4165 . . . . . . . . 9  |-  ( u  e.  ~P U  <->  u  C_  U
)
1413a1i 11 . . . . . . . 8  |-  ( y  =  P  ->  (
u  e.  ~P U  <->  u 
C_  U ) )
1512, 14anbi12d 747 . . . . . . 7  |-  ( y  =  P  ->  (
( u  e.  ( ( nei `  J
) `  { y } )  /\  u  e.  ~P U )  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  u  C_  U ) ) )
169, 15syl5bb 272 . . . . . 6  |-  ( y  =  P  ->  (
u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P U )  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  u  C_  U ) ) )
1716anbi1d 741 . . . . 5  |-  ( y  =  P  ->  (
( u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P U )  /\  ( Jt  u )  e.  A
)  <->  ( ( u  e.  ( ( nei `  J ) `  { P } )  /\  u  C_  U )  /\  ( Jt  u )  e.  A
) ) )
18 anass 681 . . . . 5  |-  ( ( ( u  e.  ( ( nei `  J
) `  { P } )  /\  u  C_  U )  /\  ( Jt  u )  e.  A
)  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  (
u  C_  U  /\  ( Jt  u )  e.  A
) ) )
1917, 18syl6bb 276 . . . 4  |-  ( y  =  P  ->  (
( u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P U )  /\  ( Jt  u )  e.  A
)  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  (
u  C_  U  /\  ( Jt  u )  e.  A
) ) ) )
2019rexbidv2 3048 . . 3  |-  ( y  =  P  ->  ( E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P U ) ( Jt  u )  e.  A  <->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) ) )
2120rspccva 3308 . 2  |-  ( ( A. y  e.  U  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P U ) ( Jt  u )  e.  A  /\  P  e.  U )  ->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) )
228, 21stoic3 1701 1  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698   neicnei 20901  𝑛Locally cnlly 21268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-nlly 21270
This theorem is referenced by:  nlly2i  21279  llycmpkgen  21355
  Copyright terms: Public domain W3C validator