| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > llyi | Structured version Visualization version Unicode version | ||
| Description: The property of a locally
|
| Ref | Expression |
|---|---|
| llyi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islly 21271 |
. . . 4
| |
| 2 | 1 | simprbi 480 |
. . 3
|
| 3 | pweq 4161 |
. . . . . . 7
| |
| 4 | 3 | ineq2d 3814 |
. . . . . 6
|
| 5 | 4 | rexeqdv 3145 |
. . . . 5
|
| 6 | 5 | raleqbi1dv 3146 |
. . . 4
|
| 7 | 6 | rspccva 3308 |
. . 3
|
| 8 | 2, 7 | sylan 488 |
. 2
|
| 9 | eleq1 2689 |
. . . . . . 7
| |
| 10 | 9 | anbi1d 741 |
. . . . . 6
|
| 11 | 10 | anbi2d 740 |
. . . . 5
|
| 12 | anass 681 |
. . . . . 6
| |
| 13 | elin 3796 |
. . . . . . . 8
| |
| 14 | selpw 4165 |
. . . . . . . . 9
| |
| 15 | 14 | anbi2i 730 |
. . . . . . . 8
|
| 16 | 13, 15 | bitri 264 |
. . . . . . 7
|
| 17 | 16 | anbi1i 731 |
. . . . . 6
|
| 18 | 3anass 1042 |
. . . . . . 7
| |
| 19 | 18 | anbi2i 730 |
. . . . . 6
|
| 20 | 12, 17, 19 | 3bitr4i 292 |
. . . . 5
|
| 21 | 11, 20 | syl6bb 276 |
. . . 4
|
| 22 | 21 | rexbidv2 3048 |
. . 3
|
| 23 | 22 | rspccva 3308 |
. 2
|
| 24 | 8, 23 | stoic3 1701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-lly 21269 |
| This theorem is referenced by: llynlly 21280 islly2 21287 llyrest 21288 llyidm 21291 nllyidm 21292 lly1stc 21299 dislly 21300 txlly 21439 cvmlift2lem10 31294 |
| Copyright terms: Public domain | W3C validator |