| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmcvfval | Structured version Visualization version Unicode version | ||
| Description: Value of the norm function in a normed complex vector space. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmfval.6 |
|
| Ref | Expression |
|---|---|
| nmcvfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfval.6 |
. 2
| |
| 2 | df-nmcv 27455 |
. . 3
| |
| 3 | 2 | fveq1i 6192 |
. 2
|
| 4 | 1, 3 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-nmcv 27455 |
| This theorem is referenced by: nvop2 27463 nvop 27531 cnnvnm 27536 phop 27673 phpar 27679 h2hnm 27833 hhssnm 28116 |
| Copyright terms: Public domain | W3C validator |