| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0vfval | Structured version Visualization version Unicode version | ||
| Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0vfval.2 |
|
| 0vfval.5 |
|
| Ref | Expression |
|---|---|
| 0vfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | fo1st 7188 |
. . . . . . 7
| |
| 3 | fofn 6117 |
. . . . . . 7
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . . 6
|
| 5 | ssv 3625 |
. . . . . 6
| |
| 6 | fnco 5999 |
. . . . . 6
| |
| 7 | 4, 4, 5, 6 | mp3an 1424 |
. . . . 5
|
| 8 | df-va 27450 |
. . . . . 6
| |
| 9 | 8 | fneq1i 5985 |
. . . . 5
|
| 10 | 7, 9 | mpbir 221 |
. . . 4
|
| 11 | fvco2 6273 |
. . . 4
| |
| 12 | 10, 11 | mpan 706 |
. . 3
|
| 13 | 0vfval.5 |
. . . 4
| |
| 14 | df-0v 27453 |
. . . . 5
| |
| 15 | 14 | fveq1i 6192 |
. . . 4
|
| 16 | 13, 15 | eqtri 2644 |
. . 3
|
| 17 | 0vfval.2 |
. . . 4
| |
| 18 | 17 | fveq2i 6194 |
. . 3
|
| 19 | 12, 16, 18 | 3eqtr4g 2681 |
. 2
|
| 20 | 1, 19 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-1st 7168 df-va 27450 df-0v 27453 |
| This theorem is referenced by: nvi 27469 nvzcl 27489 nv0rid 27490 nv0lid 27491 nv0 27492 nvsz 27493 nvrinv 27506 nvlinv 27507 hh0v 28025 |
| Copyright terms: Public domain | W3C validator |