| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phpar | Structured version Visualization version Unicode version | ||
| Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phpar.1 |
|
| phpar.2 |
|
| phpar.4 |
|
| phpar.6 |
|
| Ref | Expression |
|---|---|
| phpar |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phpar.2 |
. . . . . . 7
| |
| 2 | 1 | vafval 27458 |
. . . . . 6
|
| 3 | fvex 6201 |
. . . . . 6
| |
| 4 | 2, 3 | eqeltri 2697 |
. . . . 5
|
| 5 | phpar.4 |
. . . . . . 7
| |
| 6 | 5 | smfval 27460 |
. . . . . 6
|
| 7 | fvex 6201 |
. . . . . 6
| |
| 8 | 6, 7 | eqeltri 2697 |
. . . . 5
|
| 9 | phpar.6 |
. . . . . . 7
| |
| 10 | 9 | nmcvfval 27462 |
. . . . . 6
|
| 11 | fvex 6201 |
. . . . . 6
| |
| 12 | 10, 11 | eqeltri 2697 |
. . . . 5
|
| 13 | 4, 8, 12 | 3pm3.2i 1239 |
. . . 4
|
| 14 | 1, 5, 9 | phop 27673 |
. . . . . 6
|
| 15 | 14 | eleq1d 2686 |
. . . . 5
|
| 16 | 15 | ibi 256 |
. . . 4
|
| 17 | phpar.1 |
. . . . . . 7
| |
| 18 | 17, 1 | bafval 27459 |
. . . . . 6
|
| 19 | 18 | isphg 27672 |
. . . . 5
|
| 20 | 19 | simplbda 654 |
. . . 4
|
| 21 | 13, 16, 20 | sylancr 695 |
. . 3
|
| 22 | 21 | 3ad2ant1 1082 |
. 2
|
| 23 | oveq1 6657 |
. . . . . . . 8
| |
| 24 | 23 | fveq2d 6195 |
. . . . . . 7
|
| 25 | 24 | oveq1d 6665 |
. . . . . 6
|
| 26 | oveq1 6657 |
. . . . . . . 8
| |
| 27 | 26 | fveq2d 6195 |
. . . . . . 7
|
| 28 | 27 | oveq1d 6665 |
. . . . . 6
|
| 29 | 25, 28 | oveq12d 6668 |
. . . . 5
|
| 30 | fveq2 6191 |
. . . . . . . 8
| |
| 31 | 30 | oveq1d 6665 |
. . . . . . 7
|
| 32 | 31 | oveq1d 6665 |
. . . . . 6
|
| 33 | 32 | oveq2d 6666 |
. . . . 5
|
| 34 | 29, 33 | eqeq12d 2637 |
. . . 4
|
| 35 | oveq2 6658 |
. . . . . . . 8
| |
| 36 | 35 | fveq2d 6195 |
. . . . . . 7
|
| 37 | 36 | oveq1d 6665 |
. . . . . 6
|
| 38 | oveq2 6658 |
. . . . . . . . 9
| |
| 39 | 38 | oveq2d 6666 |
. . . . . . . 8
|
| 40 | 39 | fveq2d 6195 |
. . . . . . 7
|
| 41 | 40 | oveq1d 6665 |
. . . . . 6
|
| 42 | 37, 41 | oveq12d 6668 |
. . . . 5
|
| 43 | fveq2 6191 |
. . . . . . . 8
| |
| 44 | 43 | oveq1d 6665 |
. . . . . . 7
|
| 45 | 44 | oveq2d 6666 |
. . . . . 6
|
| 46 | 45 | oveq2d 6666 |
. . . . 5
|
| 47 | 42, 46 | eqeq12d 2637 |
. . . 4
|
| 48 | 34, 47 | rspc2v 3322 |
. . 3
|
| 49 | 48 | 3adant1 1079 |
. 2
|
| 50 | 22, 49 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-1st 7168 df-2nd 7169 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-nmcv 27455 df-ph 27668 |
| This theorem is referenced by: ip0i 27680 hlpar 27753 |
| Copyright terms: Public domain | W3C validator |