![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notnotd | Structured version Visualization version Unicode version |
Description: Deduction associated with notnot 136 and notnoti 137. (Contributed by Jarvin Udandy, 2-Sep-2016.) Avoid biconditional. (Revised by Wolf Lammen, 27-Mar-2021.) |
Ref | Expression |
---|---|
notnotd.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
notnotd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | notnot 136 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: eupth2lemb 27097 xrdifh 29542 amosym1 32425 nnfoctbdjlem 40672 lighneallem1 41522 lighneallem3 41524 lindslinindsimp2 42252 |
Copyright terms: Public domain | W3C validator |