MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offval2f Structured version   Visualization version   Unicode version

Theorem offval2f 6909
Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 23-Jun-2017.)
Hypotheses
Ref Expression
offval2f.0  |-  F/ x ph
offval2f.a  |-  F/_ x A
offval2f.1  |-  ( ph  ->  A  e.  V )
offval2f.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
offval2f.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
offval2f.4  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
offval2f.5  |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )
Assertion
Ref Expression
offval2f  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A  |->  ( B R C ) ) )
Distinct variable group:    x, R
Allowed substitution hints:    ph( x)    A( x)    B( x)    C( x)    F( x)    G( x)    V( x)    W( x)    X( x)

Proof of Theorem offval2f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 offval2f.0 . . . . . 6  |-  F/ x ph
2 offval2f.2 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
32ex 450 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  B  e.  W ) )
41, 3ralrimi 2957 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  W )
5 offval2f.a . . . . . 6  |-  F/_ x A
65fnmptf 6016 . . . . 5  |-  ( A. x  e.  A  B  e.  W  ->  ( x  e.  A  |->  B )  Fn  A )
74, 6syl 17 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  Fn  A
)
8 offval2f.4 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
98fneq1d 5981 . . . 4  |-  ( ph  ->  ( F  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
107, 9mpbird 247 . . 3  |-  ( ph  ->  F  Fn  A )
11 offval2f.3 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
1211ex 450 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  C  e.  X ) )
131, 12ralrimi 2957 . . . . 5  |-  ( ph  ->  A. x  e.  A  C  e.  X )
145fnmptf 6016 . . . . 5  |-  ( A. x  e.  A  C  e.  X  ->  ( x  e.  A  |->  C )  Fn  A )
1513, 14syl 17 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  Fn  A
)
16 offval2f.5 . . . . 5  |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )
1716fneq1d 5981 . . . 4  |-  ( ph  ->  ( G  Fn  A  <->  ( x  e.  A  |->  C )  Fn  A ) )
1815, 17mpbird 247 . . 3  |-  ( ph  ->  G  Fn  A )
19 offval2f.1 . . 3  |-  ( ph  ->  A  e.  V )
20 inidm 3822 . . 3  |-  ( A  i^i  A )  =  A
218adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  F  =  ( x  e.  A  |->  B ) )
2221fveq1d 6193 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( ( x  e.  A  |->  B ) `
 y ) )
2316adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  G  =  ( x  e.  A  |->  C ) )
2423fveq1d 6193 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( G `  y )  =  ( ( x  e.  A  |->  C ) `
 y ) )
2510, 18, 19, 19, 20, 22, 24offval 6904 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( y  e.  A  |->  ( ( ( x  e.  A  |->  B ) `
 y ) R ( ( x  e.  A  |->  C ) `  y ) ) ) )
26 nfcv 2764 . . . 4  |-  F/_ y A
27 nffvmpt1 6199 . . . . 5  |-  F/_ x
( ( x  e.  A  |->  B ) `  y )
28 nfcv 2764 . . . . 5  |-  F/_ x R
29 nffvmpt1 6199 . . . . 5  |-  F/_ x
( ( x  e.  A  |->  C ) `  y )
3027, 28, 29nfov 6676 . . . 4  |-  F/_ x
( ( ( x  e.  A  |->  B ) `
 y ) R ( ( x  e.  A  |->  C ) `  y ) )
31 nfcv 2764 . . . 4  |-  F/_ y
( ( ( x  e.  A  |->  B ) `
 x ) R ( ( x  e.  A  |->  C ) `  x ) )
32 fveq2 6191 . . . . 5  |-  ( y  =  x  ->  (
( x  e.  A  |->  B ) `  y
)  =  ( ( x  e.  A  |->  B ) `  x ) )
33 fveq2 6191 . . . . 5  |-  ( y  =  x  ->  (
( x  e.  A  |->  C ) `  y
)  =  ( ( x  e.  A  |->  C ) `  x ) )
3432, 33oveq12d 6668 . . . 4  |-  ( y  =  x  ->  (
( ( x  e.  A  |->  B ) `  y ) R ( ( x  e.  A  |->  C ) `  y
) )  =  ( ( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
) ) )
3526, 5, 30, 31, 34cbvmptf 4748 . . 3  |-  ( y  e.  A  |->  ( ( ( x  e.  A  |->  B ) `  y
) R ( ( x  e.  A  |->  C ) `  y ) ) )  =  ( x  e.  A  |->  ( ( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
) ) )
36 simpr 477 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
375fvmpt2f 6283 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  W )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
3836, 2, 37syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
395fvmpt2f 6283 . . . . . 6  |-  ( ( x  e.  A  /\  C  e.  X )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
4036, 11, 39syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  C ) `  x
)  =  C )
4138, 40oveq12d 6668 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
) )  =  ( B R C ) )
421, 41mpteq2da 4743 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( ( ( x  e.  A  |->  B ) `
 x ) R ( ( x  e.  A  |->  C ) `  x ) ) )  =  ( x  e.  A  |->  ( B R C ) ) )
4335, 42syl5eq 2668 . 2  |-  ( ph  ->  ( y  e.  A  |->  ( ( ( x  e.  A  |->  B ) `
 y ) R ( ( x  e.  A  |->  C ) `  y ) ) )  =  ( x  e.  A  |->  ( B R C ) ) )
4425, 43eqtrd 2656 1  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A  |->  ( B R C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   A.wral 2912    |-> cmpt 4729    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    oFcof 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897
This theorem is referenced by:  esumaddf  30123  binomcxplemnotnn0  38555
  Copyright terms: Public domain W3C validator